首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multi-Locus Sequence Typing (MLST) of Streptococcus pneumoniae is based on the sequence of seven housekeeping gene fragments. The analysis of MLST allelic profiles by eBURST allows the grouping of genetically related strains into Clonal Complexes (CCs) including those genotypes with a common descent from a predicted ancestor. However, the increasing use of MLST to characterize S. pneumoniae strains has led to the identification of a large number of new Sequence Types (STs) causing the merger of formerly distinct lineages into larger CCs. An example of this is the CC156, displaying a high level of complexity and including strains with allelic profiles differing in all seven of the MLST loci, capsular type and the presence of the Pilus Islet-1 (PI-1). Detailed analysis of the CC156 indicates that the identification of new STs, such as ST4945, induced the merging of formerly distinct clonal complexes. In order to discriminate the strain diversity within CC156, a recently developed typing schema, 96-MLST, was used to analyse 66 strains representative of 41 different STs. Analysis of allelic profiles by hierarchical clustering and a minimum spanning tree identified ten genetically distinct evolutionary lineages. Similar results were obtained by phylogenetic analysis on the concatenated sequences with different methods. The identified lineages are homogenous in capsular type and PI-1 presence. ST4945 strains were unequivocally assigned to one of the lineages. In conclusion, the identification of new STs through an exhaustive analysis of pneumococcal strains from various laboratories has highlighted that potentially unrelated subgroups can be grouped into a single CC by eBURST. The analysis of additional loci, such as those included in the 96-MLST schema, will be necessary to accurately discriminate the clonal evolution of the pneumococcal population.  相似文献   

3.

Background

The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10.

Methods and Findings

Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates.

Conclusions

Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation.  相似文献   

4.
Here we report a single nucleotide polymorphism (SNP) based genotyping method for Klebsiella pneumoniae utilising high-resolution melting (HRM) analysis of fragments within the multilocus sequence typing (MLST) loci. The approach is termed mini-MLST or Minim typing and it has previously been applied to Streptococcus pyogenes, Staphylococcus aureus and Enterococcus faecium. Six SNPs were derived from concatenated MLST sequences on the basis of maximisation of the Simpsons Index of Diversity (D). DNA fragments incorporating these SNPs and predicted to be suitable for HRM analysis were designed. Using the assumption that HRM alleles are defined by G+C content, Minim typing using six fragments was predicted to provide a D = 0.979 against known STs. The method was tested against 202 K. pneumoniae using a blinded approach in which the MLST analyses were performed after the HRM analyses. The HRM-based alleles were indeed in accordance with G+C content, and the Minim typing identified known STs and flagged new STs. The tonB MLST locus was determined to be very diverse, and the two Minim fragments located herein contribute greatly to the resolving power. However these fragments are refractory to amplification in a minority of isolates. Therefore, we assessed the performance of two additional formats: one using only the four fragments located outside the tonB gene (D = 0.929), and the other using HRM data from these four fragments in conjunction with sequencing of the tonB MLST fragment (D = 0.995). The HRM assays were developed on the Rotorgene 6000, and the method was shown to also be robust on the LightCycler 480, allowing a 384-well high through-put format. The assay provides rapid, robust and low-cost typing with fully portable results that can directly be related to current MLST data. Minim typing in combination with molecular screening for antibiotic resistance markers can be a powerful surveillance tool kit.  相似文献   

5.
Eight strains of Bacillus cereus isolated from bacteremia and soft tissue infections were assigned to seven sequence types (STs) by multilocus sequence typing (MLST). Two strains from different locations had identical STs. The concatenated sequences of the seven STs were aligned with 65 concatenated sequences from reference STs and a neighbor-joining tree was constructed. Two strains were distantly related to all reference STs. Three strains were recovered in a clade that included Bacillus anthracis, B. cereus and rare Bacillus thuringiensis strains while the other three strains were assigned to two STs that were more closely affiliated to most of the B. thuringiensis STs. We conclude that invasive B. cereus strains do not form a single clone or clonal complex of highly virulent strains.  相似文献   

6.
The introduction of multilocus sequence typing (MLST) for strain characterization provided the first sequence-based approach for genotyping many fungi, leading to reproducible, reliable, and exchangeable data. A MLST scheme based on the analysis of six housekeeping genes was developed for genotyping Geotrichum candidum. The scheme was first developed using 18 isolates for which the complete sequences of the alanyl-tRNA synthetase (ALA1), pyruvate kinase (CDC19), acetyl-coA acetyltransferase (ERG10), glutaminyl-tRNA synthase (GLN4), phosphoglucoisomerase (PGI1), and phosphoglucomutase (PGM2) housekeeping genes were determined. Multiple sequence alignments of these genes were used to define a set of loci showing, as closely as possible, the same phylogenetic resolution level as complete gene sequences. This scheme was subsequently validated with 22 additional isolates from dairy and non-dairy sources. Overall, 58 polymorphic sites were indexed among 3,009 nucleotides analyzed. Depending on the loci, four to eight alleles were detected, generating 17 different sequence types, of which ten were represented by a single strain. MLST analysis suggested a predominantly clonal population for the 40?G. candidum isolates. Phylogenetic analysis of the concatenated sequences revealed a distantly related group of four isolates. Interestingly, this group diverged with respect to internal transcribed spacers 1 (ITS1), 5.8S, and ITS2 analysis. The reproducibility of the MLST approach was compared to random amplification of microsatellites by PCR (RAM-PCR), a gel profiling method previously proposed for G. candidum strain typing. Our results found MLST differentiation to be more efficient than RAM-PCR, and MLST also offered a non-ambiguous, unique language, permitting data exchange and evolutionary inference.  相似文献   

7.
Multilocus sequence typing (MLST) is a sequence-based method used to characterize bacterial genomes. This method was used to examine the genetic structure of Medicago-nodulating rhizobia at the Amra site, which is located in an arid region of Tunisia. Here the annual medics Medicago laciniata and M. truncatula are part of the natural flora. The goal of this study was to identify whether distinct chromosomal groups of rhizobia nodulate M. laciniata because of its restricted requirement for specific rhizobia. The MLST analysis involved determination of sequence variation in 10 chromosomal loci of 74 isolates each of M. laciniata and M. truncatula. M. truncatula was used as a control trap host, because unlike M. laciniata, it has relatively unrestricted rhizobial requirements. Allelic diversity among the plasmid nodC alleles in the isolates was also determined. The 148 isolates were placed into 26 chromosomal sequence types (STs), only 3 of which had been identified previously. The rhizobia of M. laciniata were shown to be part of the general Medicago-nodulating population in the soil because 99.95% of the isolates had chromosomal genotypes similar to those recovered from M. truncatula. However, the isolates recovered from M. laciniata were less diverse than those recovered from M. truncatula, and they also harbored an unusual nodC allele. This could perhaps be best explained by horizontal transfer of the different nodC alleles among members of the Medicago-nodulating rhizobial population at the field site. Evidence indicating a history of lateral transfer of rhizobial symbiotic genes across distinct chromosomal backgrounds is provided.  相似文献   

8.
Bartonella quintana is a re-emerging pathogen and the causative agent of a variety of disease manifestations in humans including trench fever. Various typing methods have been developed for B. quintana, but these tend to be limited by poor resolution and, in the case of gel-based methods, a lack of portability. Multilocus sequence typing (MLST) has been used to study the molecular epidemiology of a large number of pathogens, including B. henselae, a close relative of B. quintana. We developed a MLST scheme for B. quintana based on the 7 MLST loci employed for B. henselae with two additional loci to cover underrepresented regions of the B. quintana chromosome. A total of 16 B. quintana isolates spanning over 60 years and three continents were characterized. Allelic variation was detected in five of the nine loci. Although only 8/4270 (0.002%) of the nucleotide sites examined were variable over all loci, these polymorphisms resolved the 16 isolates into seven sequence types (STs). We also demonstrate that MLST can be applied on uncultured isolates by direct PCR from cardiac valve tissue, and suggest this method presents a promising approach for epidemiological studies in this highly clonal organism. Phylogenetic and clustering analyses suggest that two of the seven STs form a distinct lineage within the population.  相似文献   

9.
10.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

11.
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.  相似文献   

12.
Bartonellae are facultative intracellular bacteria and are highly adapted to their mammalian host cell niches. Straw-colored fruit bats (Eidolon helvum) are commonly infected with several bartonella strains. To elucidate the genetic diversity of these bartonella strains, we analyzed 79 bartonella isolates from straw-colored fruit bats in seven countries across Africa (Cameroon, Annobon island of Equatorial Guinea, Ghana, Kenya, Nigeria, Tanzania, and Uganda) using a multi-locus sequencing typing (MLST) approach based on nucleotide sequences of eight loci (ftsZ, gltA, nuoG, ribC, rpoB, ssrA, ITS, and 16S rRNA). The analysis of each locus but ribC demonstrated clustering of the isolates into six genogroups (E1 – E5 and Ew), while ribC was absent in the isolates belonging to the genogroup Ew. In general, grouping of all isolates by each locus was mutually supportive; however, nuoG, gltA, and rpoB showed some incongruity with other loci in several strains, suggesting a possibility of recombination events, which were confirmed by network analyses and recombination/mutation rate ratio (r/m) estimations. The MLST scheme revealed 45 unique sequence types (ST1 – 45) among the analyzed bartonella isolates. Phylogenetic analysis of concatenated sequences supported the discrimination of six phylogenetic lineages (E1 – E5 and Ew) corresponding to separate and unique Bartonella species. One of the defined lineages, Ew, consisted of only two STs (ST1 and ST2), and comprised more than one-quarter of the analyzed isolates, while other lineages contained higher numbers of STs with a smaller number of isolates belonging to each lineage. The low number of allelic polymorphisms of isolates belonging to Ew suggests a more recent origin for this species. Our findings suggest that at least six Bartonella species are associated with straw-colored fruit bats, and that distinct STs can be found across the distribution of this bat species, including in populations of bats which are genetically distinct.  相似文献   

13.
Representative strains of the Bacillus cereus group of bacteria, including Bacillus anthracis (11 isolates), B. cereus (38 isolates), Bacillus mycoides (1 isolate), Bacillus thuringiensis (53 isolates from 17 serovars), and Bacillus weihenstephanensis (2 isolates) were assigned to 59 sequence types (STs) derived from the nucleotide sequences of seven alleles, glpF, gmk, ilvD, pta, pur, pycA, and tpi. Comparisons of the maximum likelihood (ML) tree of the concatenated sequences with individual gene trees showed more congruence than expected by chance, indicating a generally clonal structure to the population. The STs followed two major lines of descent. Clade 1 comprised B. anthracis strains, numerous B. cereus strains, and rare B. thuringiensis strains, while clade 2 included the majority of the B. thuringiensis strains together with some B. cereus strains. Other species were allocated to a third, heterogeneous clade. The ML trees and split decomposition analysis were used to assign STs to eight lineages within clades 1 and 2. These lineages were defined by bootstrap analysis and by a preponderance of fixed differences over shared polymorphisms among the STs. Lineages were named with reference to existing designations: Anthracis, Cereus I, Cereus II, Cereus III, Kurstaki, Sotto, Thuringiensis, and Tolworthi. Strains from some B. thuringiensis serovars were wholly or largely assigned to a single ST, for example, serovar aizawai isolates were assigned to ST-15, serovar kenyae isolates were assigned to ST-13, and serovar tolworthi isolates were assigned to ST-23, while other serovars, such as serovar canadensis, were genetically heterogeneous. We suggest a revision of the nomenclature in which the lineage and clone are recognized through name and ST designations in accordance with the clonal structure of the population.  相似文献   

14.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

15.
The characterization of Campylobacter jejuni has been significantly improved by the use of multilocus sequence typing (MLST), which allows the relationship between isolates to be determined. The sequence types (STs) of 261 isolates of C. jejuni from New Zealand were determined. Isolates were obtained from a range of sources including chicken meat, cattle, pigs, duck, sheep, water and human infections. Thirty-two new alleles and 44 new STs were identified. Comparison of the MLST data and pulsed-field gel electrophoresis macrorestriction profiles showed that the macrorestriction profiles were good predictors of the clonal complex (CC) but not ST. All the major CCs identified elsewhere in the world were found in New Zealand as well as the association of certain CCs with particular animal niches. The majority of new STs identified were from river water isolates.  相似文献   

16.
Burkholderia pseudomallei is a Gram-negative soil bacillus that is the etiological agent of melioidosis and a biothreat agent. Little is known about the biogeography of this bacterium in Australia, despite its hyperendemicity in the northern region of this continent. The population structure of 953 Australian B. pseudomallei strains representing 779 and 174 isolates of clinical and environmental origins, respectively, was analyzed using multilocus sequence typing (MLST). Bayesian population structure and network SplitsTree analyses were performed on concatenated MLST loci, and sequence type (ST) diversity and evenness were examined using Simpson''s and Pielou''s indices and a multivariate dissimilarity matrix. Bayesian analysis found two B. pseudomallei populations in Australia that were geographically distinct; isolates from the Northern Territory were grouped mainly into the first population, whereas the majority of isolates from Queensland were grouped in a second population. Differences in ST evenness were observed between sampling areas, confirming that B. pseudomallei is widespread and established across northern Australia, with a large number of fragmented habitats. ST analysis showed that B. pseudomallei populations diversified as the sampling area increased. This observation was in contrast to smaller sampling areas where a few STs predominated, suggesting that B. pseudomallei populations are ecologically established and not frequently dispersed. Interestingly, there was no identifiable ST bias between clinical and environmental isolates, suggesting the potential for all culturable B. pseudomallei isolates to cause disease. Our findings have important implications for understanding the ecology of B. pseudomallei in Australia and for potential source attribution of this bacterium in the event of unexpected cases of melioidosis.  相似文献   

17.
AIMS: Multilocus sequence typing (MLST) was used to examine the diversity and population structure of Campylobacter jejuni isolates associated with sporadic cases of gastroenteritis in Australia, and to compare these isolates with those from elsewhere. METHODS AND RESULTS: A total of 153 Camp. jejuni isolates were genotyped. Forty sequence types (STs) were found, 19 of which were previously undescribed and 21 identified in other countries. The 19 newly described STs accounted for 43% of isolates, 16 of which were assigned to known clonal complexes. Eighty-eight percent of isolates were assigned to a total of 15 clonal complexes. Of these, four clonal complexes accounted for 60% of isolates. Three STs accounted for nearly 40% of all isolates and appeared to be endemic, while 21 STs were represented by more than one isolate. Seven infections were acquired during international travel, and the associated isolates all had different STs, three of which were exclusive to the travel-acquired cases. Comparison of serotypes among isolates from clonal complexes revealed further diversity. Eight serotypes were identified among isolates from more than one clonal complex, while isolates from six clonal complexes displayed serotypes not previously associated with those clonal complexes. CONCLUSIONS: Multilocus sequence typing is a useful tool for the discrimination of subtypes and examination of the population structure of Camp. jejuni associated with sporadic infections. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the genotypic diversity of Camp. jejuni in Australia, demonstrating that STs causing disease have both a global and a local distribution evident from the typing of domestically and internationally acquired Camp. jejuni isolates.  相似文献   

18.
黄曲霉(Aspergillus flavus)是一种广泛分布的腐生真菌, 是黄曲霉毒素B (aflatoxin B, AFB)和圆弧偶氮酸(cyclopiazonic acid, CPA)的主要产生菌, 也是动植物的条件致病菌。全球的玉米、花生和棉籽均不同程度地遭到黄曲霉及其毒素的污染。黄曲霉菌株间在形态学、遗传学和产毒特性上变异较大, 且其居群遗传结构也尚不明确。为了揭示黄曲霉居群遗传结构及其产毒素特性的规律, 本研究选取了从我国26省区(包括大小兴安岭)不同环境中分离的黄曲霉88株, 结合模式菌株和国际权威菌株9株, 基于钙调蛋白基因(CaM)和β-微管蛋白基因(benA)进行多基因序列分型(multi-locus sequence typing, MLST), 使用MEGA 6.0和Structure 2.3.4软件进行系统发育学分析和居群结构推导, 并结合菌株的产毒特性(AFB和CPA)进行比较分析。结果显示本研究的97株黄曲霉可分为3个居群, 即黄曲霉居群I、黄曲霉居群II和米曲霉居群, 该97株黄曲霉共有17个序列型(sequence type, ST), 其中我国的88株菌分布于15个序列型。米曲霉居群均不产AFB, 黄曲霉居群I和II的菌株绝大多数都产AFB和CPA, 其产毒特性只具有菌株特异性, 与居群和序列型无关。黄曲霉菌株产毒特性与地理分布或农作物类型间存在一定关系。我国东北玉米产区、西北干旱棉花产区和南方花生产区的黄曲霉居群I和II菌株均产AFB和CPA, 我国青海可可西里和四川阿坝地区的黄曲霉仅产CPA而不产AFB, 不产AFB的米曲霉居群大部分来自我国气候和地理环境多样的华北地区, 该地区也是我国农村传统酿造黄豆酱的地区。  相似文献   

19.
Lactococcus lactis phage infections are costly for the dairy industry because they can slow down the fermentation process and adversely impact product safety and quality. Although many strategies have been developed to better control phage populations, new virulent phages continue to emerge. Thus, it is beneficial to develop an efficient method for the routine identification of new phages within a dairy plant to rapidly adapt antiphage tactics. Here, we present a multilocus sequence typing (MLST) scheme for the characterization of the 936-like phages, the most prevalent phage group infecting L. lactis strains worldwide. The proposed MLST system targets the internal portion of five highly conserved genomic sequences belonging to the packaging, morphogenesis, and lysis modules. Our MLST scheme was used to analyze 100 phages with different restriction fragment length polymorphism (RFLP) patterns isolated from 11 different countries between 1971 and 2010. PCR products were obtained for all the phages analyzed, and sequence analysis highlighted the high discriminatory power of the MLST system, detecting 93 different sequence types. A conserved locus within the lys gene (coding for endolysin) was the most discriminative, with 65 distinct alleles. The locus within the mcp gene (major capsid protein) was the most conserved (54 distinct alleles). Phylogenetic analyses of the concatenated sequences exhibited a strong concordance of the clusters with the phage host range, indicating the clonal evolution of these phages. A public database has been set up for the proposed MLST system, and it can be accessed at http://pubmlst.org/bacteriophages/.  相似文献   

20.
Clustered, Regularly Interspaced Short Palindromic Repeats and their associated Cas proteins (CRISPR-Cas) provide prokaryotes with a mechanism for defense against mobile genetic elements (MGEs). A CRISPR locus is a molecular memory of MGE encounters. It contains an array of short sequences, called spacers, that generally have sequence identity to MGEs. Three different CRISPR loci have been identified among strains of the opportunistic pathogen Enterococcus faecalis. CRISPR1 and CRISPR3 are associated with the cas genes necessary for blocking MGEs, but these loci are present in only a subset of E. faecalis strains. The orphan CRISPR2 lacks cas genes and is ubiquitous in E. faecalis, although its spacer content varies from strain to strain. Because CRISPR2 is a variable locus occurring in all E. faecalis, comparative analysis of CRISPR2 sequences may provide information about the clonality of E. faecalis strains. We examined CRISPR2 sequences from 228 E. faecalis genomes in relationship to subspecies phylogenetic lineages (sequence types; STs) determined by multilocus sequence typing (MLST), and to a genome phylogeny generated for a representative 71 genomes. We found that specific CRISPR2 sequences are associated with specific STs and with specific branches on the genome tree. To explore possible applications of CRISPR2 analysis, we evaluated 14 E. faecalis bloodstream isolates using CRISPR2 analysis and MLST. CRISPR2 analysis identified two groups of clonal strains among the 14 isolates, an assessment that was confirmed by MLST. CRISPR2 analysis was also used to accurately predict the ST of a subset of isolates. We conclude that CRISPR2 analysis, while not a replacement for MLST, is an inexpensive method to assess clonality among E. faecalis isolates, and can be used in conjunction with MLST to identify recombination events occurring between STs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号