首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small protein B (SmpB) is a requisite component of the transfer messenger RNA (tmRNA)-mediated bacterial translational quality control system known as trans-translation. The initial binding of tmRNA and its subsequent accommodation into the ribosomal A-site are activities intimately linked to SmpB protein function. From a mechanistic perspective, two key unanswered questions that require further investigation are: 1) what constitutes a stalled ribosome recognition complex and 2) does SmpB pre-bind ribosomes to recruit tmRNA. We have assessed, both in vivo and in vitro, the nature and stability of free SmpB interactions with stalled ribosomes and examined whether these interactions are functionally relevant. We present evidence to demonstrate that interaction of free SmpB with ribosomes is salt sensitive and significantly more labile than interaction of the SmpB.tmRNA complex with ribosomes. Upon dissociation of 70 S ribosomes SmpB partitions primarily with tmRNA rather than ribosomal subunits. This finding is consistent with biochemical and structural data demonstrating that tmRNA is the high-affinity binding partner of SmpB. Moreover, we show that under normal physiological conditions roughly similar numbers of SmpB and tmRNA molecules are present in cells. Our investigations also reveal that upon induction of a nonstop mRNA, SmpB is enriched in stalled ribosome fractions only in the presence of tmRNA. Based on these findings, we conclude that SmpB does not pre-bind stalled ribosome and that functional SmpB-stalled ribosome interactions require tmRNA. We propose that a 1:1:1 complex of SmpB.tmRNA.EF-Tu(GTP) recognizes and binds a stalled ribosome to initiate trans-translation.  相似文献   

2.
3.
Transfer-messenger RNA (tmRNA) mimics functions of aminoacyl-tRNA and mRNA, subsequently, when rescuing stalled ribosomes on a 3' truncated mRNA without stop codon in bacteria. In addition, this mechanism marks prematurely terminated proteins by a C-terminal peptide tag as a signal for degradation by specific cellular proteases. For Escherichia coli, previous studies on initial steps of this "trans-translation" mechanism revealed that tmRNA alanylation by Ala-tRNA synthetase and binding of Ala-tmRNA by EF-Tu-GTP for subsequent delivery to stalled ribosomes are inefficient when compared to analogous reactions with canonical tRNA(Ala). In other studies, protein SmpB and ribosomal protein S1 appeared to bind directly to tmRNA and to be indispensable for trans-translation. Here, we have searched for additional and synergistic effects of the latter two on tmRNA alanylation and its subsequent binding to EF-Tu-GTP. Kinetic analysis of functioning combined with band-shift experiments and structural probing demonstrate, that tmRNA may indeed form a multimeric complex with SmpB, S1 and EF-Tu-GTP, which leads to a considerably enhanced efficiency of the initial steps of trans-translation. Whereas S1 binds to the mRNA region of tmRNA, we have found that SmpB and EF-Tu both interact with its acceptor arm region. Interaction with SmpB and EF-Tu was also observed at the acceptor arm of Ala-tRNA(Ala), but there the alanylation efficiency was inhibited rather than stimulated by SmpB. Therefore, SmpB may function as an essential modulator of the tRNA-like acceptor arm of tmRNA during its successive steps in trans-translation.  相似文献   

4.
Occasionally, ribosomes stall on mRNAs prior to the completion of the polypeptide chain. In Escherichia coli and other eubacteria, tmRNA-mediated trans-translation is a major mechanism that recycles the stalled ribosomes. The tmRNA possesses a tRNA-like domain and a short mRNA region encoding a short peptide (ANDENYALAA in E. coli) followed by a termination codon. The first amino acid (Ala) of this peptide encoded by the resume codon (GCN) is highly conserved in tmRNAs in different species. However, reasons for the high evolutionary conservation of the resume codon identity have remained unclear. In this study, we show that changing the E. coli tmRNA resume codon to other efficiently translatable codons retains efficient functioning of the tmRNA. However, when the resume codon was replaced with the low-usage codons, its function was adversely affected. Interestingly, expression of tRNAs decoding the low-usage codon from plasmid-borne gene copies restored efficient utilization of tmRNA. We discuss why in E. coli, the GCA (Ala) is one of the best codons and why all codons in the short mRNA of the tmRNA are decoded by the abundant tRNAs.  相似文献   

5.
Transfer-messenger RNA (tmRNA) acts first as a tRNA and then as an mRNA template to rescue stalled ribosomes in eubacteria. Together with its protein partner, SmpB (small protein B), tmRNA enters stalled ribosomes and transfers an Ala residue to the growing polypeptide chain. A remarkable step then occurs: the ribosome leaves the stalled mRNA and resumes translation using tmRNA as a template, adding a short peptide tag that destines the aborted protein for destruction. Exactly how the ribosome switches templates, resuming translation on tmRNA in the proper reading frame, remains unknown. Within the tmRNA sequence itself, five nucleotides (U85AGUC) immediately upstream of the first codon appear to direct frame selection. In particular, mutation of the conserved A86 results in severe loss of function both in vitro and in vivo. The A86C mutation causes translation to resume exclusively in the + 1 frame. Several candidate binding partners for this upstream sequence have been identified in vitro. Using a genetic selection for tmRNA activity in Escherichia coli, we identified mutations in the SmpB protein that restore the function of A86C tmRNA in vivo. The SmpB mutants increase tagging in the normal reading frame and reduce tagging in the + 1 frame. These results demonstrate that SmpB is functionally linked with the sequence upstream of the tmRNA template; both contribute to reading frame selection on tmRNA.  相似文献   

6.
During bacterial protein synthesis, stalled ribosomes can be rescued by tmRNA, a molecule with both tRNA and mRNA features. The tRNA region of tmRNA has sequence similarity with tRNA(Ala) and also has a clover-leaf structure folded similarly as in canonical tRNAs. Here we propose the L-shape of tmRNA to be stabilized by two tertiary interactions between its D- and T-loop on the basis of phylogenetic and experimental evidence. Mutational analysis clearly demonstrates a tertiary interaction between G(13) and U(342). Strikingly, this in evolution conserved interaction is not primarily important for tmRNA alanylation and for binding to elongation factor Tu, but especially for a proper functioning of SmpB.  相似文献   

7.
In bacteria, stalled ribosomes are recycled by a hybrid transfer-messenger RNA (tmRNA). Like tRNA, tmRNA is aminoacylated with alanine and is delivered to the ribosome by EF-Tu, where it reacts with the growing polypeptide chain. tmRNA entry into stalled ribosomes poses a challenge to our understanding of ribosome function because it occurs in the absence of a codon-anticodon interaction. Instead, tmRNA entry is licensed by the binding of its protein partner, SmpB, to the ribosomal decoding center. We analyzed a series of SmpB mutants and found that its C-terminal tail is essential for tmRNA accommodation but not for EF-Tu activation. We obtained evidence that the tail likely functions as a helix on the ribosome to promote accommodation and identified key residues in the tail essential for this step. In addition, our mutational analysis points to a role for the conserved K(131)GKK tail residues in trans-translation after peptidyl transfer to tmRNA, presumably EF-G-mediated translocation or translation of the tmRNA template. Surprisingly, analysis of A1492, A1493, and G530 mutants reveals that while these ribosomal nucleotides are essential for normal tRNA selection, they play little to no role in peptidyl transfer to tmRNA. These studies clarify how SmpB interacts with the ribosomal decoding center to license tmRNA entry into stalled ribosomes.  相似文献   

8.
Emerging views on tmRNA-mediated protein tagging and ribosome rescue   总被引:9,自引:0,他引:9  
Transfer-messenger RNA (tmRNA), also known as SsrA or 10Sa RNA, is a bacterial ribonucleic acid that recycles 70S ribosomes stalled on problematic messenger RNAs (mRNAs) and also contributes to the degradation of incompletely synthesized peptides. tmRNA acts initially as transfer RNA (tRNA), being aminoacylated at its 3'-end by alanyl-tRNA synthetase, to add alanine to the stalled polypeptide chain. Resumption of translation ensues not on the mRNA on which the ribosomes were stalled but at an internal position in tmRNA. Termination soon occurs, tmRNA recruiting the appropriate termination factors allowing the release of the tagged protein that is subsequently recognized and degraded by specific cytoplasmic and periplasmic proteases, and permits ribosome recycling. Recent data suggest that tmRNA tags bacterial proteins in three other instances; when ribosomes stall at internal sites; during 'readthrough' of canonical termination codons; and when ribosomes are at the termination codon of intact messages. The importance of bacterial tmRNAs for survival, growth under stress, and pathogenesis is also discussed. Recent in vivo and in vitro studies have identified novel ligands of tmRNA. Based on the available experimental evidences, an updated model of tmRNA mediated protein tagging and ribosome rescue in bacteria is presented.  相似文献   

9.
To rescue stalled ribosomes, eubacteria employ a molecule, transfer messenger RNA (tmRNA), which functions both as a tRNA and as an mRNA. With the help of small protein B (SmpB), tmRNA restarts protein synthesis and adds by the trans-translation mechanism a peptide tag to the stalled protein to target it for destruction by cellular proteases. Here, the cellular location and expression of endogenous SmpB were monitored in vivo. We report that SmpB is associated with 70S ribosomes and not in the soluble fraction, independently of the presence of tmRNA. In vitro, SmpB that is pre-bound to a stalled ribosome can trigger initiation of trans-translation. Our results demonstrate the existence of a novel pathway for the entry of tmRNA to the ribosome and for the trans-transfer of a nascent peptide chain from peptidyl-tRNA to charged tmRNA.  相似文献   

10.
Ribosomes are trapped at the 3′ ends of mRNAs that lack a natural stop codon. In bacteria, a reaction called trans-translation recycles ribosomes entrapped at such ‘non-stop’ mRNAs. The main player in trans-translation is tmRNA (SsrA-RNA), a bi-functional RNA that acts as both a tRNA and an mRNA. In the trans-translation reaction, alanine-charged tmRNA loads at the ribosomal A-site and translation shifts to the resume codon in tmRNA. Translation of tmRNA stops at a natural stop codon at the end of the small reading frame of tmRNA. In this way, the reaction simultaneously adds a peptide tag to the end of the nascent, incomplete polypeptide and recycles the stalled ribosomes. The peptide tag is recognized by cellular proteases that rapidly degrade the incomplete, potentially harmful polypeptides. The trans-translation reaction is not essential in most bacteria, raising the possibility that ribosomes stalled at non-stop mRNAs can be rescued by alternative routes. In this issue of Molecular Microbiology, Chadani et al. show that a novel translation factor, ArfA, can recycle a ribosome trapped at the 3′ end of a non-stop mRNA in the absence of trans-translation. AfrA is essential in the absence of tmRNA, showing that the two systems work in parallel to resolve stalled ribosomes.  相似文献   

11.
tmRNA (transfer messenger RNA) is a unique molecule used by all bacteria to rescue stalled ribosomes and to mark unfinished peptides with a specific degradation signal. tmRNA is recruited by arrested ribosomes in which it facilitates the translational switch from cellular mRNA to the mRNA part of tmRNA. Small protein B (SmpB) is a key partner for the trans-translation activity of tmRNA both in vivo and in vitro. It was shown that SmpB acts at the initiation step of the trans-translation process by facilitating tmRNA aminoacylation and binding to the ribosome. Little is known about the subsequent steps of trans-translation. Here we demonstrated the first example of an investigation of tmRNA.ribosome complexes at different stages of trans-translation. Our results show that the structural element at the position of tmRNA pseudoknot 3 remains intact during the translation of the mRNA module of tmRNA and that it is localized on the surface of the ribosome. At least one SmpB molecule remains bound to a ribosome.tmRNA complex isolated from the cell when translation is blocked at different positions within the mRNA part of tmRNA.  相似文献   

12.
Transfer-messenger RNA (tmRNA) enters stalled translational complexes and, with small protein B (SmpB), mediates peptide tagging of the nascent protein and release of the stalled ribosome. Recent studies clarify how the tmRNA system is targeted to ribosomes and suggest that tmRNA-tagging is used for both quality control and specific regulation of cellular physiology.  相似文献   

13.
trans-Translation, orchestrated by SmpB and tmRNA, is the principal eubacterial pathway for resolving stalled translation complexes. RNase R, the leading nonstop mRNA surveillance factor, is recruited to stalled ribosomes in a trans-translation dependent process. To elucidate the contributions of SmpB and tmRNA to RNase R recruitment, we evaluated Escherichia coliFrancisella tularensis chimeric variants of tmRNA and SmpB. This evaluation showed that while the hybrid tmRNA supported nascent polypeptide tagging and ribosome rescue, it suffered defects in facilitating RNase R recruitment to stalled ribosomes. To gain further insights, we used established tmRNA and SmpB variants that impact distinct stages of the trans-translation process. Analysis of select tmRNA variants revealed that the sequence composition and positioning of the ultimate and penultimate codons of the tmRNA ORF play a crucial role in recruiting RNase R to rescued ribosomes. Evaluation of defined SmpB C-terminal tail variants highlighted the importance of establishing the tmRNA reading frame, and provided valuable clues into the timing of RNase R recruitment to rescued ribosomes. Taken together, these studies demonstrate that productive RNase R-ribosomes engagement requires active trans-translation, and suggest that RNase R captures the emerging nonstop mRNA at an early stage after establishment of the tmRNA ORF as the surrogate mRNA template.  相似文献   

14.
15.
The bacterial ssrA gene codes for a dual function RNA, tmRNA, which possesses tRNA-like and mRNA-like regions. The tmRNA appends an oligopeptide tag to the polypeptide on the P-site tRNA by a trans-translation process that rescues ribosomes stalled on the mRNAs and targets the aberrant protein for degradation. In cells, processing of the stalled ribosomes is also pioneered by drop-off of peptidyl-tRNAs. The ester bond linking the peptide to tRNA is hydrolyzed by peptidyl-tRNA hydrolase (Pth), an essential enzyme, which releases the tRNA and the aberrant peptide. As the trans-translation mechanism utilizes the peptidyl-transferase activity of the stalled ribosomes to free the tRNA (as opposed to peptidyl-tRNA drop-off), the need for Pth to recycle such tRNAs is bypassed. Thus, we hypothesized that tmRNA may rescue a defect in Pth. Here, we show that overexpression of tmRNA rescues the temperature-sensitive phenotype of Escherichia coli (pthts). Conversely, a null mutation in ssrA enhances the temperature-sensitive phenotype of the pthts strain. Consistent with our hypothesis, overexpression of tmRNA results in decreased accumulation of peptidyl-tRNA in E.coli. Furthermore, overproduction of tmRNA in E.coli strains deficient in ribosome recycling factor and/or lacking the release factor 3 enhances the rescue of pthts strains. We discuss the physiological relevance of these observations to highlight a major role of tmRNA in decreasing cellular peptidyl-tRNA load.  相似文献   

16.
Transfer-messenger RNA (tmRNA) and protein SmpB facilitate trans-translation, a quality-control process that tags truncated proteins with short peptides recognized by a number of proteases and recycles ribosomes stalled at the 3′ end of mRNA templates lacking stop codons. The tmRNA molecule is a hybrid of tRNA- and mRNA-like domains that are usually connected by four pseudoknots (pk1–pk4). Replacement of pk1 with a single-stranded RNA yields pk1L, a mutant tmRNA that tags truncated proteins very poorly in vitro but very efficiently in vivo. However, deletion of the whole pk1 is deleterious for protein tagging. In contrast, deletion of helix 4 yields Δh4, a fully functional tmRNA derivative containing a single hairpin instead of pk1. Further deletions in the pk1 segment yield two subclasses of mutant tmRNAs that are unable to tag truncated proteins, but some of them bind to stalled ribosomes. Our studies demonstrate that pk1 is not essential for tmRNA functions but contributes to the stability of the tmRNA structure. Our studies also indicate that the length of this RNA segment is critical for both tmRNA binding to the ribosome and resumption of translation.  相似文献   

17.
Ribosomes translate genetic information encoded by mRNAs into protein chains with high fidelity. Truncated mRNAs lacking a stop codon will cause the synthesis of incomplete peptide chains and stall translating ribosomes. In bacteria, a ribonucleoprotein complex composed of tmRNA, a molecule that combines the functions of tRNAs and mRNAs, and small protein B (SmpB) rescues stalled ribosomes. The SmpB-tmRNA complex binds to the stalled ribosome, allowing translation to resume at a short internal tmRNA open reading frame that encodes a protein degradation tag. The aberrant protein is released when the ribosome reaches the stop codon at the end of the tmRNA open reading frame and the fused peptide tag targets it for degradation by cellular proteases. The recently determined NMR structures of SmpB, the crystal structure of the SmpB-tmRNA complex and the cryo-EM structure of the SmpB-tmRNA-EF-Tu-ribosome complex have provided first detailed insights into the intricate mechanisms involved in ribosome rescue.  相似文献   

18.
Streptomycetes are soil microorganisms with the potential to produce a broad spectrum of secondary metabolities. The production of antibiotics is accompanied by a decrease in protein synthesis, which raises the question of how these bacteria survived the transition from the primary to the secondary metabolism. Translating ribosomes incapable to properly elongate or terminate polypeptide chain activate bacterial trans‐translation system. Abundance and stability of the tmRNA during growth of Streptomyces collinus and Streptomyces griseus producing kirromycin and streptomycin, respectively, was analysed. The level of tmRNA is mostly proportional to the activity of the translational system. We demonstrate that the addition of sub‐inhibitory concentrations of produced antibiotics to the cultures from the beginning of the exponential phase of growth leads to an increase in tmRNA levels and to an incorporation of amino acids into the tag‐peptides at trans‐translation of stalled ribosomes. These findings suggest that produced antibiotics induce tmRNA that facilitate reactivation of stalled complex of ribosomes and maintain viability. The effect of antibiotics that inhibit the cell‐wall turnover, DNA, RNA or protein synthesis on the level of tmRNA was examined. Antibiotics interfering with ribosomal target sites are more effective at stimulation of the tmRNA level in streptomycetes examined than those affecting the synthesis of DNA, RNA or the cell wall.  相似文献   

19.
20.
Saguy M  Gillet R  Metzinger L  Felden B 《Biochimie》2005,87(9-10):897-903
Translation is an efficient and accurate mechanism, needing thorough systems of control-quality to ensure the correspondence between the information carried by the messenger RNA (mRNA) and the newly synthesized protein. Among them, trans-translation ensures delivering of stalled ribosomes when translation occurs on truncated mRNAs in bacteria, followed by the degradation of the incomplete nascent proteins. This process requires transfer-messenger RNA (tmRNA), an original molecule acting as both a tRNA and an mRNA. tmRNA first enters the decoding site of stuck ribosomes and, despite the lack of any codon-anticodon interaction, acts as a tRNA by transferring its alanine to the incomplete protein. Translation then switches to a small internal coding sequence (mRNA domain), which encodes a tag directing the incomplete protein towards degradation. Although playing a central role during trans-translation, tmRNA function depends on associated proteins. Genetic, biochemical and recent structural data are starting to unravel how the process takes place, by involving three main protein partners. Small protein B (SmpB) interacts with the tRNA-like domain (TLD) of tmRNA and is indispensable and specific to the process. Elongation factor Tu (EF-Tu) binds simultaneously the TLD and brings aminoacylated tmRNA to the ribosome, as for canonical tRNAs. Ribosomal protein S1 forms complexes with tmRNA, facilitating its recruitment by the stalled ribosomes. The chronology of events, however, is poorly understood and recent data shed light on the functions attributed to the proteins involved in trans-translation. This review focuses on the puzzling relationship that tmRNA has with these three protein ligands, putting forward trans-translation as a highly dynamical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号