首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to identify factors affecting PGF(2alpha) efficacy to synchronize estrus in water buffalo cows. After detection of a corpus luteum (CL) by rectal palpation, cows were treated (im) with dinoprost (12.5, 25 or 50mg) or D(+) cloprostenol (75, 150 or 300 microg) in a total of 66 treatments. Blood samples were collected 0, 24 and 48 h after treatment and ultrasound examinations and observations for estrus were performed daily to the day of ovulation or to 6 days after treatment. No PGF(2alpha) dose-response pattern was observed and overall rates of luteal regression (progesterone <1.0 ng/ml at 48 h), estrus, no detected behavioral estrus with ovulation occurring, and ovulation were 71.2, 36.4, 19.7 and 54.5%, respectively. To analyze plasma progesterone concentrations and ovarian dynamics, cows were divided in three groups according to their response to treatment. Cows that failed to have ovulations from a follicle after treatment (Group A, n = 30) had (P < 0.05) a lower plasma progesterone concentration (2.98 ng/ml) and smaller CL area (CLA; 187.3 mm(2)) before treatment as compared with cows that had an ovulation from a follicle (4.43 ng/ml and 223.7 mm(2), respectively; Groups B and C, n = 36). In cows that failed to ovulate, plasma progesterone concentration decreased in the first 24 h, but did not decline further and was >1.0 ng/ml 48 h after treatment. Moreover, no significant change in CLA after treatment was detected, indicating that treatment induced only partial luteolysis. In cows that ovulated, plasma progesterone concentration and CLA decreased continuously from treatment to ovulation (consistent with complete luteolysis). Threshold values of 2.8 ng/ml for plasma progesterone concentration and 189 mm(2) for CLA were identified as the best predictors of ovulation before treatment (83.3 and 80.6% sensitivity and 58.6 and 65.5% specificity, respectively, with positive and negative predictive values around 71%). When the origin of the ovulatory follicle was investigated, the interval from treatment to ovulation was shorter (91.9 versus 113.3 h; P < 0.05), and the ovulatory follicle had a slower growth rate (1.02 versus 1.55 mm per day; P < 0.005), a lesser increase in diameter from treatment to ovulation (4.7 versus 8.0 mm; P < 0.001), and a greater maximum diameter (13.2 versus 12.1 mm; P < 0.05) in cows that ovulated from the largest follicle present in the ovary before treatment (Group B, n = 27) compared with cows that ovulated from the second largest follicle present in the ovary before treatment (Group C, n = 9). In summary, the efficacy of PGF(2alpha) for causing luteolysis and synchronizing estrus and ovulation in buffalo cows was dependent upon plasma progesterone concentration, CL size and ovarian follicular status before treatment.  相似文献   

2.
Management of the postpartum period is one of the most important factors of stud farm medicine. In horses, owing to the long gestation period, the time from parturition to repeat conception needs be short to maintain an optimal yearly foaling interval. For this reason the features of postpartum ovarian activity and sexual behavior were studied under farm conditions. During 2 consecutive breeding seasons, 107 mares on 5 commercial horse farms were monitored after parturition by regular teasing, transrectal ultrasonography and blood sampling for progesterone. Foalings took place from January 1 to June 15. Body condition scoring was carried out within 5 d and at 60 to 65 d after parturition. The first ovulation occurred within 20 d after foaling in 84.1% (90/107) of the mares. The mean intervals from foaling to the first and second ovulations were 17.8 +/- 1.6 d (+/- SEM) and 40.9 +/- 2.7 d (+/- SEM), respectively. The mean intervals from parturition to the first and second ovulation (P < 0.001), the interovulatory interval (P < 0.01), the second follicular phase (P < 0.001), and the time until the first overt estrus (P < 0.01) were significantly longer in mares foaling before the vernal equinox. In the beginning of the breeding season the intervals from parturition to the first ovulation (P < 0.01), to the second ovulation (P < 0.01), and to the first overt estrus (P < 0.001) were significantly longer for primiparous mares than for multiparous animals. There was a tendency for an increased interovulatory interval and for a longer second follicular phase in mares with decreased body condition after parturition (P = 0.069, P = 0.089, respectively). Suckling and breed had no effect on postpartum ovarian activity. We concluded that under field conditions the resumption of cyclic ovarian activity and sexual behavior in mares after foaling are strongly affected by the season of parturition and parity. In some cases, body condition change and other factors may also play a role in influencing postpartum reproductive function.  相似文献   

3.
Accurate prediction of parturition date is useful for clinical management of canine parturition. For nearly all normal canine pregnancies, parturition occurs 64-66 days from the LH peak, the timing of which cannot be differentiated from the initial sharp rise in serum progesterone (P4) concentrations. We sought to determine by retrospective analysis if prebreeding serum progesterone concentrations could accurately predict parturition date. Serum progesterone concentrations recorded as serial samples from 63 bitches (19 breeds) were analyzed. Progesterone concentrations were measured by radioimmunoassay (RIA) or chemiluminescent immunoassay (CLIA). The CLIA method was validated for use in determining P4 concentrations in canine serum and results were comparable to those obtained with RIA. Bitches were grouped by nonpregnant body weight (BW) and litter size (LS). Day 0 (D0), the day of preovulatory rise in serum P4, was defined as the day that P4 concentration rose to > or =l.5 ng/ml and was at least twice the baseline concentration. The predicted parturition date, 65 days following the day of preovulatory rise in serum P4 (D65), was compared to actual parturition date, the day the first pup was delivered. We determined that mean P4 concentration at D0 for all BW groups was 2.02+/-0.18 ng/ml and there was significant variation in P4 concentrations between BW groups after D1. In addition, we determined that the accuracy of parturition date prediction within a +/-1, +/-2, and +/-3 day interval using prebreeding serum progesterone concentrations was 67, 90, and 100%, respectively, and that the accuracy was not affected by body weight or litter size.  相似文献   

4.
The cervix functions as a barrier to spermatozoa. Vaginal artificial insemination in cats is, therefore, likely to be successful only at the period of estrus when the cervix is open. This study aimed to define the period of cervical patency in cats in both non-ovulatory and ovulatory estrus cycles. A total of 15 reproductive cycles were studied in six cats during the estrous stage. Cervical patency was monitored with the cats under sedation, by infusing 2 mL of Iohexol contrast medium via a 3.5 French tomcat catheter into the cranial vagina during estrus. Day one of estrus was defined as the first day the cats showed estrous behavior. Non-ovulatory cycles were characterized by a serum progesterone concentration on days 11-15 that was below 5 nmol/L and a normal interestrus interval of 7-14 days. Ovulatory cycles were characterized by a serum progesterone concentration on days 11-15 that was above 5 nmol/L and an interestrus interval that exceeded 30 days. The cervix was considered to be open when the contrast medium was seen to enter the uterus, and to be closed when the contrast medium remained in the vagina. Blood samples were collected at each examination and were assayed for estradiol-17beta and progesterone concentrations. The cervix was open on the first day of standing estrus at a mean estradiol-17beta serum concentration of 87.4+/-21.8 pmol/L (range 14 to >or=180 pmol/L) and closed at an estradiol concentration of 47.1+/-12.4 pmol/L (range 4 to >or=180 pmol/L). In the ovulatory cycles the cervix was closed at a progesterone concentration of 9.8+/-4.4 nmol/L (range 0.6-28.4 nmol/L). There was no difference in the duration of cervical patency in non-ovulatory and ovulatory cycles (5.5+/-1.2 days and 5.2+/-0.5 days, respectively) (p>0.05). The higher overall mean concentrations of estradiol-17beta seen in the ovulatory cycles than in the non-ovulatory cycles, indicate that a high level of estradiol is necessary for induction of ovulation. Ovulation in 60% of unmated females in this study indicates that the techniques used for evaluation of cyclus stage and cervical opening have the potential to induce ovulation in the cat. This study demonstrates that cervical patency is not influenced by the occurrence of ovulation, but is due to individual variations between cats.  相似文献   

5.
Serum estradiol-17beta concentrations were determined during silent estrus in the mare. Relationships between serum estradiol-17beta concentration, corpus luteum regression, follicular development, ovulation, prostaglandin treatment and behavioral estrus were investigated. The expression of behavioral estrus was found to be related to the patterns of progesterone and estradiol-17beta secretion during the periovulatory period. When compared to normal estrous cycles, silent estrus was accompanied by a significantly lower maximum serum estradiol-17beta concentration (47.8 vs 34.6 pg/ml), a significantly longer interval from maximum estradiol-17beta concentration to ovulation (1.7 vs 4.0 days), and a significantly shorter interval from corpus luteum regression to ovulation (5.3 vs 2.8 days). Silent estrus following prostaglandin treatment was related to a significantly shorter interval from prostaglandin treatment to ovulation (3.6 +/- 0.4 days) than from normal corpus luteum regression to ovulation (5.3 +/- 0.3 days). Silent estrus appeared to be related to changes in follicular estradiol-17beta secretion and to the pattern of its secretion as related to regression of the corpus luteum. There appeared to be not only less estradiol-17beta present, but also less time available after luteal regression for it to interact with the central nervous system to elicit the changes necessary to cause behavioral estrus. There fore, unusual relationships between luteal function and folliculogenesis can result in one type of silent estrus. Significant correlations (P<0.05) were found between follicle size and serum estradiol-17beta concentration whenever behavioral estrus occurred [follicle diameter in mm = 0.96 (serum estradiol-17beta in pg/ml) + 6.08 and 0.73 (serum estradiol-17beta + 13.32 for control and normal estrus following prostaglandin treatment groups, respectively]. During silent estrus, however, no significant correlations between follicle size and serum estradiol-17beta concentration were observed.  相似文献   

6.
The correlations between some meteorological parameters and fertility data were evaluated in Barki x Rahmani crossbred ewes using the records of five consecutive years (2003-2007). Additionally, estrus detection and ultrasonic evaluation were applied on eighteen mature dry ewes during breeding and non-breeding seasons. The effect of lactation was evaluated by monitoring estrus behavior in ninety four lactating ewes from 40 to 120 d after parturition. Moreover, ultrasonography was used to identify ovarian activity in six cyclic and six acyclic non-lactating ewes. Results revealed that relative estrus occurrence and fertile mating were positively correlated (P <0.05) with high temperature and long photoperiod (conditions of summer season), and were negatively correlated (P < 0.01) with rainfall (condition of winter season). During breeding season, estrus rate, serum progesterone concentration, and diameter of largest follicle were significantly (P < 0.05) higher than those observed during the non-breeding season. Furthermore, month of parturition had a significant effect (P < 0.05) on estrus rate of lactating ewes where ewes that lambed in August, September, and October recorded higher estrus rate than those lambed in November and December. However, the lactational strength did not exert any deleterious effect on the reproductive performance of lactating ewes.In conclusion, in Egypt under subtropical conditions, Barki x Rahmani crossbred ewes exerted optimum estrus behavior and fertile mating during summer season. The reduction in estrus activity during lactation was due to the seasonal effect rather than lactational stress.  相似文献   

7.
Intravaginal progesterone devices are used worldwide for estrus induction in goats. Reused devices are able to induce estrus; however, this can be a health risk within a flock. The objective was to compare new and previously used (and autoclaved) progesterone-releasing intravaginal devices for induction of estrus and ovulation in seasonally anestrous Toggenburg goats. Anestrous goats (n=42) received new intravaginal devices containing 0.3g progesterone (CONTROL), or similar devices previously used for either 6 (USED6) or 12d (USED12) and subsequently autoclaved. All goats received 5mg dinoprost at device insertion and 200 IU eCG 5d later, and all devices were removed after 6d. After device removal, estrus was monitored and females displaying signs of estrus were mated by fertile bucks. Transrectal ovarian ultrasonography was performed after device removal until detection of ovulation. Blood samples were collected for determination of plasma progesterone concentration at different times. There was no difference (P>0.05) among groups CONTROL, USED6 or USED12 for: estrus response (87, 100 or 100%, respectively); duration of estrus (32.3±2.3, 25.2±3.4 or 27.3±4.1h); ovulation rate (100, 88 or 100%); number of ovulations (1.5±0.2, 1.9±0.3 or 1.7±0.3); and pregnancy rate (60, 58 or 67%). Plasma progesterone (P4) concentrations were greater (P<0.05) in CONTROL than in USED6-treated and USED12-treated goats (7.2±1.2, 4.7±0.7 and 4.3±0.6 ng/mL, respectively) at 6h after device insertion; these differences were maintained until 4d after device insertion (3.4±0.4, 2.3±0.2, and 2.5±0.2 ng/mL). Overall, plasma progesterone concentrations were greater (P<0.05) in nulliparous than in lactating goats (3.1±0.8 compared to 2.4±0.6 ng/mL, respectively). In conclusion, autoclaved, previously used intravaginal progesterone-releasing devices resulted in significant lesser plasma progesterone concentrations than new devices, but were similarly effective in inducing estrus and ovulation in anestrous goats.  相似文献   

8.
The effects of ZK 191703 (ZK), a pure antiestrogen, on ovulation, follicle development and peripheral hormone levels were investigated in rats with 4-day estrus cycle and gonadotropin-primed immature rats in comparison to tamoxifen (TAM)-treatment. In adult rats, a single s.c. injection of ZK (5 mg/kg) or TAM (5 mg/kg) at an early stage of the estrus cycle (diestrus 9:00) inhibited ovulation, and was associated with suppression of the surge of preovulatory LH, FSH and progesterone. In rats treated with ZK or TAM at a late stage of the estrus cycle (proestrus 9:00), no inhibitory effects on ovulation, the gonadotropin and progesterone surge were detected. ZK treatment at diestrus 9:00, in contrast to TAM, increased the baseline LH level. When immature rats were treated with antiestrogens in the earlier stage of follicular development, 6 and 30 h but not 48 h or later after injection of gonadotropin (PMSG), ovulation was attenuated, associated with a lowered progesterone level. Unruptured preovulatory follicles were found in most of the ovaries from anovulatory animals treated with ZK or TAM. Antiestrogens, ZK and TAM administered at an early phase of the estrus cycle delay the follicular development functionally and inhibit ovulation in rats and suppression of the preovulatory progesterone surge.  相似文献   

9.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

10.
Kusuda S  Endoh T  Tanaka H  Adachi I  Doi O  Kimura J 《Zoo biology》2011,30(2):212-217
This study aimed at demonstrating the profiles of circulating gonadal steroid hormones during the estrous cycle and pregnancy in a southern tamandua (Tamandua tetradactyla). Additionally, this study clarified the relationship between vulvar bleeding and hormonal changes. The concentrations of serum progesterone (P(4)) and estradiol-17β (E(2)) were determined by enzyme immunoassays. Serum P(4) and E(2) concentrations changed cyclically and the estrous cycle length (± SD) based on the E(2) cycles was 44.3 ± 4.5 days. Vulvar bleeding started to be seen at the decreasing of P(4). The cycle length for vulvar bleeding was 43.3 ± 4.2 days. Interval from the first day of bleeding to the peak of E(2) concentration was 23.1 ± 3.1 days. Serum P(4) during pregnancy remained high and E(2) increased 8 weeks after conception and remained high until parturition. The female delivered normally after a 165 day-pregnancy period and reared the offspring well. Approximately 3 weeks after parturition, serum E(2) and P(4) cycles resumed. Visual bleeding may be useful as a real-time indicator for understanding the ovarian cycle of southern tamanduas, and estrus could be expected approximately 3 weeks after the first bleeding.  相似文献   

11.
Two experiments were conducted to determine the effect of days postpartum and exogenous gonadotropin releasing hormone (GnRH) on reproductive hormone and ovarian changes in postpartum suckled beef cows. In experiment 1, eight suckled cows were bled at .5 hour intervals for 4 hours on days 7, 14, 21 and 28 postpartum. Although mean concentrations of plasma luteinizing hormone (LH) were positively correlated with days postpartum, mean concentrations did not differ. The mean maximum change and the variance of plasma LH were low on days 7, 14, 21 and 28 postpartum. Although the number of cows with an ovarian follicle and follicular size increased with days postpartum, mean concentrations of estradiol-17beta did not change. The interval from parturition to the first detected ovarian follicle and the first postpartum estrus was 17.5 +/- 2.6 days and 36.0 +/- 2.2 days, respectively. An elevation in plasma progesterone was detected about one week prior to the first postpartum estrus in 6 of the eight cows in the absence of corpora lutea. In experiment 2, gonadotropin releasing hormone (GnRH) induced ovulation in 4 of the 8 cows treated on day 27, 28 or 29 postpartum whereas none of the 8 saline treated cows ovulated to treatment. The interval from parturition to first estrus and conception were similar for both groups (P >.10).  相似文献   

12.
Progesterone and estradiol 17-beta in poly (DL-lactide) microspheres were used to control estrus and ovulation in mares after luteolysis was induced by prostaglandin F(2)infinity. Mares were given a single intramuscular injection of biodegradable poly (DL-lactide) microspheres, 1 day following prostaglandin treatment, containing no hormones (control), 0.625 g progesterone and 50 mg estradiol (low dose), 1.25 g progesterone and 100 mg estradiol (medium dose), or 1.875 g progesterone and 150 mg estradiol (high dose; n=15 mares per group). Mares treated with the low dose had significantly longer intervals (P<0.05) to estrus and ovulation than the control mares; however, low dose mares had shorter intervals (P<0.05) to estrus than high dose mares and shorter intervals to ovulation than medium and high dose mares. Regression analysis indicated that the medium dose was sufficient for maximizing interval to ovulation while the high dose maximized interval to estrus. All groups of mares exhibited similar (P>0.05) post-treatment estrus lengths. A clinical response scoring system based on synchrony of both estrus and ovulation within a treatment group was also used to measure the effectiveness of treatments on control of estrus and ovulation. Clinical response scores did not differ (P>0.05) among treatment groups. Mares were randomly assigned for insemination at the beginning of the first post-treatment estrus. Rates for embryo recovery performed by uterine lavage 7 days post-ovulation did not differ (P>0.05) among groups. Concentrations of serum progesterone increased in mares receiving progesterone and estradiol microspheres. At 10 to 14 days post-injection of microspheres, progesterone concentrations were higher (P<0.05) and remained above 1 ng/ml in the mares receiving the high dose. Progesterone concentrations were also higher (P<0.05) on Days -3 to -1 (Day 0 = day of post-treatment ovulation) in mares receiving the high dose when compared to control mares. Gonadotropin concentrations were suppressed (P<0.05) in the medium and high dose groups.  相似文献   

13.
Estrogens, gonadotrophins, dopamine agonists, gonadotrophin releasing hormone (GnRH) and its agonists have been used for estrus induction in bitches. A long acting GnRH agonist implant (4.7 mg Deslorelin; Suprelorin®, Virbac) with a continuous hormone release has been developed for suppression of sexual function in male dogs. In this study we administered the Deslorelin implant placed subcutaneously on the medial side of the leg to induce estrus in 11 anestrous Beagle bitches (group A). 6 Beagle bitches (group B) with a spontaneous estrous cycle were used as controls. The progress of pre-estrus and estrus was documented by behaviour, vaginoscopy, vaginal cytology and progesterone concentration. In group A a bloody vaginal discharge was detected on average 4.8 (range 3-10) d after application of the implant. At this moment implants were removed under local anaesthesia. Pre-estrus lasted for an average of 4.5 d (range 1-12). All bitches showed estrous signs and ovulated. The ovulation took place on day 8.2 (range 4-15) after start of pre-estrus. In group B pre-estrus lasted for 7.5 d (range 6-9), and the mean day of ovulation was day 11 (range 9-13). As a consequence of ovulation, progesterone serum concentrations exceeded 10 ng/ml during or after the time of ovulation in all bitches. All bitches were bred to fertile Beagle stud dogs or inseminated with fresh semen intravaginally. Between days nine and 19 after ovulation all bitches underwent ovariohysterectomy. The uterine horns were flushed and flushes were examined for ova or embryos. The pregnancy rate in group A was 63.6% and in group B 66.7%. Despite the significantly shorter period of pre-estrus a fertile estrus could be induced in 7 out of 11 treated bitches. Induction of a fertile estrus can be achieved with a GnRH-implant—already registered for the use in male dogs—placed subcutaneously on the medial side of the leg.  相似文献   

14.
The objective of this study was to investigate whether monitoring progesterone concentrations in milk and blood plasma can be used to predict time of ovulation in dairy cattle. Whole milk was sampled twice daily and blood samples were collected once a day before the morning milking. Ovulation was assessed by trans-rectal ultrasonography at 4h intervals beginning from the end of estrus. For a parameter to be useful as predictor for time of ovulation, it should be precise (i.e. variation between animals should not exceed 12h). In milk, progesterone concentration dropped <15 ng/ml at 97.7+/-17.8h (range: 54-126 h) before ovulation, to <5 ng/ml at 79.7+/-11.2h (range: 54-98) before ovulation to decline further to <2n g/ml at 70.7+/-16.8h (range: 38-90 h) before ovulation (n=20). In plasma, progesterone concentration dropped to <4ng/ml 90.5+/-19.6h (range: 66-138 h) before ovulation and to <2 ng/ml at 75.0+/-12.2 h (range: 50-98) before ovulation. These intervals were not influenced by parity, milk production or days in milk. In conclusion, monitoring of progesterone alone is not sufficient to predict ovulation because of the large variation in timing of decrease of progesterone concentrations relative to ovulation between animals. At best the range is about 2 days.  相似文献   

15.
The objective of this experiment was to assess the relationship between electrical resistance of the vaginal mucosa and serum concentrations of estradiol (E2) and progesterone (P4) during the estrous cycle in ewes. Vaginal impedance was recorded daily using a 2-electrode impedometer in 10 nonprolific Western white-faced and 7 prolific Finn ewes, during the mid-breeding season (October to December). Transrectal ultrasonography of ovaries was performed once a day to confirm ovulation and monitor follicle growth (follicles > or =3 mm in diameter) and development of corpora lutea (CL). Jugular blood samples were collected daily for radioimmunoassay (RIA) of estradiol and progesterone. In all ewes, a decline in vaginal impedance (to <40 ohms) was closely associated with the onset of behavioral estrus. In both breeds of sheep, there was no significant correlation between daily serum concentrations of estradiol and vaginal impedance throughout the estrous cycle. Daily serum concentrations of progesterone and the E2:P4 ratio were correlated with vaginal impedance during the period of luteolysis and follicular phase in both breeds (Western white-faced ewes: r = 0.62, P = 0.0002 and r = -0.56, P = 0.0002; Finn ewes: r = 0.61, P = 0.001 and r = -0.45, P = 0.03, respectively) and early in the cycle (Days 0 to 2, Day 0 = day of ovulation) in white-faced ewes (r = 0.61, P = 0.0003 and r = -0.36, P = 0.052, respectively) but not during the remaining portion of the luteal phase in either breed. In conclusion, vaginal mucous impedance appears to be primarily controlled by progesterone, but it also changes in response to shifts in the E2:P4 ratio when progesterone concentrations are low. Impedometric characteristics of the vaginal mucosa in cyclic ewes are an indicator of serum concentrations of progesterone and E2:P4 ratios during the terminal stage of the estrous cycle.  相似文献   

16.
Eleven 3-yr-old crossbred Angus cows that had raised one calf each were mastectomized at 6 to 7 mo of their second gestation. All calves were removed from cows within 12 h after birth. Cows were kept in a drylot with a fertile bull for 60 d after parturition. Cows were observed for estrus every 6 h, and blood serum was collected daily and assayed for progesterone. The average first ovulation and first estrus occurred at 13.9 and 20.1 d after parturition, respectively. Nine of 11 cows conceived, and the average time of conception was 34.3 d after parturition. The next year, eight of the same mastectomized cows were allocated to two equal groups. In one group, calves were removed from cows within 12 h after birth, whereas in the other group, calves remained with cows for 46 to 53 d. Calves that remained with their dams were hand fed from a bottle or bucket every 12 h. The two groups of cows were kept in separate drylots about 50 m apart, and a fertile bull was kept with each group. Blood samples were obtained from all cows, and they were observed for estrus as before. Cows withcut calves ovulated before 22 d (average 16.0), exhibited estrus by 33 d (average 24.0), and conceived by 40 d (average 30.5) after calving. None of the cows with calves ovulated or exhibited estrus earlier than 49 d after calving. However, all cows ovulated by 4 d (average 3), exhibited estrus by 10 d (average 5.5), and conceived by 11 d (average 9.3) after calf removal. We conclude that cow-calf interaction can suppress ovulation and estrus even when suckling and lactation do not take place.  相似文献   

17.
This study was carried out to investigate the utility of enzymeimmunoassay (EIA) - derived progesterone profiles in the investigation of postpartum reproductive abnormalities and the effect of their use on reproductive performance in Holstein cows. Whole milk samples, collected twice weekly from parturition until confirmation of pregnancy or removal from the herd, were assayed for progesterone (P4) concentration using a commercially available microtitre plate EIA. The sensitivity, specificity, precision and accuracy were satisfactory to distinguish cyclic changes of P4 reflecting ovarian activity. The P4 profiles indicated that retained fetal membranes and anestrus were associated with increased mean intervals to first ovulation and first estrus (P < 0.05). The first luteal phase of cows with pyometra was prolonged compared with that of normal herdmates (P < 0.05). Anestrus cows had an increased number of ovulations before first service and before pregnancy (3.9 and 5.9) in comparison with normal herdmates (2.1 and 3.5; P < 0.05). Calving to pregnancy interval was increased above normal (74.8) for pyometra (125.0) and anestrus (152.7) (P < 0.05). Pregnancy rate for anestrus cows (82%) was lower than for normal cows (100%) and more anestrous cows were culled (27%) than normal cows (5%) (P < 0.5). The P4 profiles indicated that the major problem in the herd studied, anestrus (32% incidence rate), was most likely due to the failure to observe estrus rather than acyclicity.  相似文献   

18.
The objectives of this experiment were to determine the effects of 0.5 mg estradiol benzoate, administered intramuscularly 24 h after removal of CIDR-B progesterone containing intravaginal devices, on the time to estrus, ovulation and peak LH concentration in dairy heifers. Ovulatory responses and plasma LH concentrations were examined using 14 Friesian dairy heifers in 2 separate treatment periods. All heifers received a CIDR-B progesterone-containing intravaginal device with an attached 10-mg estradiol benzoate capsule for 12 d. Within each period, 24 h after CIDR-B removal, 7 heifers received an intramuscular injection of 0.5 mg estradiol benzoate while the remaining 7 heifers received an intramuscular injection of a placebo. Blood samples for LH assay were collected at 0, 6 and 12 h, and then every 4 h for 60 h after estradiol injection. Detection of estrus was conducted at 4-h intervals, and ultrasonographical examination to detect ovulation was conducted every 8 h for 88 h after removal of the CIDR-B device. Treatment with estradiol benzoate tended to reduce the time from device removal to the LH peak in Period 1 (median time to LH peak 40.1 vs 63.9 h; P = 6.07). In Period 2, treatment with estradiol had no significant effect on the time to the LH peak, standing estrus or ovulation. We hypothesize that the period effect was due to the stage of cycle at the time of treatment. For heifers treated in Period 1, the stage of cycle was random. However, because of the prior synchronization of estrus, which was implicit in the experimental design, heifers in Period 2 tended to be in late diestrus. The administration of estradiol benzoate after treatment with exogenous progesterone appears to overcome the variability in timing of LH peaks typically occurring in a herd of synchronized heifers due to different stages of follicular development.  相似文献   

19.
Treatments designed to synchronize luteolysis, preovulatory follicular development, and ovulation, and resynchronize estrus after a first AI have improved responses to synchronization treatments. Protocols based only on the use of PGF result in variable onset of estrus. Concentrations of progesterone prior to administering PGF have affected submission rates and fertility while administration of estradiol benzoate (EB) after inducing luteolysis has improved the synchrony of estrus and ovulation in some studies. In pasture-based dairy cows, GnRH-based protocols have generally resulted in one-third of both anestrous and cycling cows conceiving following synchronization of ovulation and timed AI. Protocols which use intravaginal progesterone releasing inserts (IVP4) are effective in inducing estrus in over 90% of treated dairy cows. Resynchronization of estrus after reinsertion of an IVP4 also improves the synchrony of returns to estrus, but pregnancy rates to the first AI have been reduced in some studies, and submission rates at a resynchronized estrus are less than at the first synchronized estrus. Administration of EB can be used to synchronize follicle wave emergence in resynchronized cows with intervals to new wave emergence comparable to that in cows synchronized for a first AI, but plasma concentrations of progesterone following treatment may be reduced. Synchronization of estrus and ovulation can be enhanced by administration of EB or GnRH during proestrus, but dose, timing and stage of follicular development at the time of treatment can affect outcomes.  相似文献   

20.
Nagy P  Juhasz J  Wernery U 《Theriogenology》2005,64(2):292-304
The occurrence of spontaneous ovulation in dromedaries was examined in two separate studies including 20 non-lactating, barren and 12 lactating dromedaries, respectively. Lactating camels were milked twice a day with an automatic bucket milking machine. Ovarian activity was monitored by repeated ultrasonography. Blood samples for progesterone were collected daily or two to three times a week. To compare CL development after spontaneous and induced ovulations, ovulation was induced by a GnRH analogue in eight lactating dromedaries. Spontaneous ovulation was observed in one non-lactating camel (1 of 20 camels, 5%; 1 of 70 follicular waves, 1.4%), whereas, spontaneous ovulation was detected more frequently in lactating dromedaries (5 of 12 camels, 41.7%; 13 of 91 follicular waves, 14.3%). In one lactating camel, spontaneous ovulation occurred repeatedly for nine times. There was a significant effect of type of ovulation (spontaneous versus induced, P < 0.05) and day (P < 0.001) on serum progesterone concentration. Mean serum progesterone levels and total progesterone production (AUC) were higher after induced ovulation. Luteal diameter and serum progesterone concentration were positively correlated (r = 0.71, P < 0.001), but there was a significant difference between morphological and functional development of the CL. In dromedaries, morphological development starts earlier, morphological regression starts later and last longer than functional development and regression of the CL. Compared to induced ovulation, functional development of the CL after spontaneous ovulation might be altered but the morphological development is not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号