首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although Zn(2+) homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn(2+) concentration ([Zn(2+) ](i)) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn(2+)](i) and intracellular Ca(2+) concentration were monitored simultaneously using FluoZin-3 and Fura-2FF, and intracellular pH (pH(i)) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na(+)-free conditions (Na(+) substituted with N-methyl-D-glucamine(+)) caused Ca(2+) influx, pH(i) drop, and Zn(2+) release from intracellular stores. Experimental maneuvers resulting in a pH(i) increase during Glu/Gly applications, such as stimulation of Na(+) -dependent pathways of H(+) efflux, forcing H(+) efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn(2+)](i) elevations. In the absence of Na(+), the rate of [Zn(2+)](i) decrease could be correlated with the rate of pH(i) increase. In the presence of Na(+), the rate of [Zn(2+) ](i) decrease was about twice as fast as expected from the rate of pH(i) elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn(2+) ](i) elevations and that Na(+) counteracts the latter by promoting pH(i)-dependent and pH(i)-independent mechanisms of cytosolic Zn(2+) clearance.  相似文献   

2.
肾上腺髓质素降低培养海马神经元胞内游离钙离子浓度   总被引:1,自引:0,他引:1  
Ji SM  Xue JM  Wang C  Su SW  He RR 《生理学报》2005,57(3):340-345
经荧光探针Fluo 3-AM标记细胞内游离钙后,用激光共聚焦显微镜检测肾上腺髓质素(adrenomedullin,ADM)对原代培养大鼠海马神经元内游离钙浓度([Ca^2 ]1)的影响。实验结果如下:(1)ADM(0.01-1.0μmol/L)浓度依赖性地降低细胞内钙浓度。(2)降钙素基因相关肽受体阻断剂(calcitonin gene-related peptide,CGRP8-37)预处理可部分抑制ADM的效应。(3)ADM可显著抑制高钾引起的[Ca^2 ]1增加。(4)ADM可显著抑制三磷酸肌醇(inositol 1,4,5-trisphosphate,IP3)引起的内钙释放,而对兰尼定(ryanodine)引起的内钙释放无显著影响。以上结果提示,ADM降低培养海马神经元内游离钙浓度,此作用与其抑制IP,引起的内钙释放有关,ADM对静息状态下的Ca^2 内流无影响,但可显著抑制高钾引起的Ca^2 内流,CGRP受体介导了ADM的上述效应。  相似文献   

3.
Mitochondria buffer large changes in [Ca(2+)](i)following an excitotoxic glutamate stimulus. Mitochondrial sequestration of [Ca(2+)](i)can beneficially stimulate oxidative metabolism and ATP production. However, Ca(2+)overload may have deleterious effects on mitochondrial function and cell survival, particularly Ca(2+)-dependent production of reactive oxygen species (ROS) by the mitochondria. We recently demonstrated that the mitochondrial Na(+)-Ca(2+)exchanger in neurons is selectively inhibited by CGP-37157, a benzothiazepine analogue of diltiazem. In the present series of experiments we investigated the effects of CGP-37157 on mitochondrial functions regulated by Ca(2+). Our data showed that 25 microM CGP-37157 quenches DCF fluorescence similar to 100 microM glutamate and this effect was enhanced when the two stimuli were applied together. CGP-37157 did not increase ROS generation and did not alter glutamate or 3mM hydrogen-peroxide-induced increases in ROS as measured by DHE fluorescence. CGP-37157 induces a slight decrease in intracellular pH, much less than that of glutamate. In addition, CGP-37157 does not enhance intracellular acidification induced by glutamate. Although it is possible that CGP-37157 can enhance mitochondrial respiration both by blocking Ca(2+)cycling and by elevating intramitochondrial Ca(2+), we did not observe any changes in ATP levels or toxicity either in the presence or absence of glutamate. Finally, mitochondrial Ca(2+)uptake during an excitotoxic glutamate stimulus was only slightly enhanced by inhibition of mitochondrial Ca(2+)efflux. Thus, although CGP-37157 alters mitochondrial Ca(2+)efflux in neurons, the inhibition of Na(+)-Ca(2+)exchange does not profoundly alter glutamate-mediated changes in mitochondrial function or mitochondrial Ca(2+)content.  相似文献   

4.
In this study, we examined the acute effects of thyroid hormones (TH) T(3) and T(4), leading to improvement of myocardial function through activation of Ca(2+) extrusion mechanisms and, consequently, prevention of intracellular calcium overload. Extracellular calcium elevation from 1.8 to 3.8 mM caused immediate increase in intracellular calcium level ([Ca(2+)](i)) in newborn cardiomyocyte cultures. Administration of 10 or 100 nM T(3) or T(4) rapidly (within 10 sec) decreased [Ca(2+)](i) to its control level. Similar results were obtained when [Ca(2+)](i) was elevated by decreasing extracellular Na(+) concentration, causing backward influx of Ca(2+) through Na(+)/Ca(2+) exchanger, or by administration of caffeine, releasing Ca(2+) from the sarcoplasmic reticulum (SR). Under these conditions, T(3) or T(4) decreased [Ca(2+)](i). T(3) and T(4) also exhibited protective effects during ischemia. T(3) or T(4) presence during hypoxia for 120 min in culture medium restricted the increase of [Ca(2+)](i) and prevented the pathological effects of its overload. An inhibitor of SR Ca(2+)-ATPase (SERCA2a), thapsigargin, increases [Ca(2+)](i) and in its presence neither T(3) nor T(4) had any effect on the [Ca(2+)](i) level. The reduction of [Ca(2+)](i) level by T(3) and T(4) was also blocked in the presence of H-89 (a PKA inhibitor), and by calmodulin inhibitors. The effect of TH on the reduction of [Ca(2+)](i) was prevented by propranolol, indicating that the hormones exert their effect through interaction with adrenergic receptors. These results support our hypothesis that TH prevent calcium overload in newborn rat cardiomyocytes, most likely by a direct, acute, and nongenomic effect on Ca(2+) transport into the SR.  相似文献   

5.
Recent evidence indicates the existence of a putative novel phosphatidylinositol-linked D1 dopamine receptor in brain that mediates phosphatidylinositol hydrolysis via activation of phospholipase Cbeta. The present work was designed to characterize the Ca(2+) signals regulated by this phosphatidylinositol-linked D(1) dopamine receptor in primary cultures of hippocampal neurons. The results indicated that stimulation of phosphatidylinositol-linked D1 dopamine receptor by its newly identified selective agonist SKF83959 induced a long-lasting increase in basal [Ca(2+)](i) in a time- and dose-dependent manner. Stimulation was observable at 0.1 microm and reached the maximal effect at 30 microm. The [Ca(2+)](i) increase induced by 1 microm SKF83959 reached a plateau in 5 +/- 2.13 min, an average 96 +/- 5.6% increase over control. The sustained elevation of [Ca(2+)](i) was due to both intracellular calcium release and calcium influx. The initial component of Ca(2+) increase through release from intracellular stores was necessary for triggering the late component of Ca(2+) rise through influx. We further demonstrated that activation of phospholipase Cbeta/inositol triphosphate was responsible for SKF83959-induced Ca(2+) release from intracellular stores. Moreover, inhibition of voltage-operated calcium channel or NMDA receptor-gated calcium channel strongly attenuated SKF83959-induced Ca(2+) influx, indicating that both voltage-operated calcium channel and NMDA receptor contribute to phosphatidylinositol-linked D(1) receptor regulation of [Ca(2+)](i).  相似文献   

6.
Prokineticin 2 (PK2) is a neuropeptide that acts as a signaling molecule regulating circadian rhythms in mammals. We have previously reported PK2 actions on subfornical organ (SFO) neurons, identifying this circumventricular organ as a target at which PK2 acts to influence autonomic control (Cottrell GT, and Ferguson AV. J. Neurosci. 24: 2375-2379, 2004). In this study, we have examined the cellular mechanisms by which PK2 increases the excitability of SFO neurons. Whole cell patch recordings from dissociated rat SFO neurons demonstrated that the mitogen-activated protein (MAP) kinase inhibitor PD-98059 prevented PK2-induced depolarization and decreases in delayed rectifier K(+) current. PK2 also increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in 39% of dissociated SFO neurons (mean increase = 20.8 +/- 5.5%), effects that were maintained in the presence of thapsigargin but abolished by both nifedipine, or the absence of extracellular Ca(2+), suggesting that PK2-induced [Ca(2+)](i) transients resulted from Ca(2+) entry through voltage-gated Ca(2+) channels. Voltage-clamp recordings showed that PK2 was without effects on Ca(2+) currents evoked by voltage ramps, suggesting that PK2-induced Ca(2+) influx was secondary to PK2-induced increases in action potential frequency, an hypothesis supported by data showing that tetrodotoxin abolished effects of PK2 on [Ca(2+)](i). These observations suggested PK2 modulation of voltage-gated Na(+) currents, a possibility confirmed by voltage-clamp experiments showing that PK2 increased the amplitude of both transient and persistent Na(+) currents in 29% of SFO neurons (by 34 and 38%, respectively). These data indicate that PK2 influences SFO neurons through the activation of a MAP kinase cascade, which, in turn, modulates Na(+) and K(+) conductances.  相似文献   

7.
The plasma membrane Ca(2+) ATPase (PMCA) is responsible for maintaining basal intracellular Ca(2+) concentration ([Ca(2+)](i)) and returning small increases in [Ca(2+)](i) back to resting levels. The carboxyl terminus of some PMCA splice variants bind Homer proteins; how binding affects PMCA function is unknown. Here, we examined the effects of altered expression of Homer proteins on PMCA-mediated Ca(2+) clearance from rat hippocampal neurons in culture. The kinetics of PMCA-mediated recovery from the [Ca(2+)](i) increase evoked by a brief train of action potentials was determined in the soma of single neurons using indo-1-based photometry. Exogenous expression of Homer 1a, Homer 1c or Homer 2a did not affect PMCA function. However, shRNA mediated knockdown of Homer 1 slowed PMCA mediated Ca(2+) clearance by 28% relative to cells expressing non-silencing shRNA. The slowed recovery rate in cells expressing Homer 1 shRNA was reversed by expression of a short Homer 2 truncation mutant. These results indicate that constitutively expressed Homer proteins tonically stimulate PMCA function in hippocampal neurons. We propose a model in which binding of short or long Homer proteins to the carboxyl terminus of the PMCA stimulates Ca(2+) clearance rate. PMCA-mediated Ca(2+) clearance may be stimulated following incorporation of the pump into Homer organized signaling domains and following induction of the Homer 1a immediate early gene.  相似文献   

8.
低浓度双氢哇巴因对豚鼠心室肌细胞内游离钙浓度的影响   总被引:6,自引:1,他引:5  
Yin JX  Wang YL  Li Q  Shang ZL  Su SW 《生理学报》2002,54(5):385-389
用激光共聚焦显微镜检查研究低浓度双氢哇巴因(DHO)对豚鼠心室肌细胞内钙浓度([Ca^2 ]i)的影响。DHO 1fmol/L-1 mmol/L可增加心室肌细胞的[Ca^2 ]i,尤其以10pmol/L DHO为显著,Nisoldipine,EGTA或TTX可分别部分抑制10pmol/L DHO的作用,去除胞外K^ 和Na^ 后,上述作用仍存在,以上结果表明,低浓度DHO中通过激活钙通道和TTX敏感的钠通道,或许还可直接促进胞内钙释放来增加[Ca^2 ]i,并有不依赖Na^ /K^ 泵而升高[Ca^2 ]i的作用。  相似文献   

9.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

10.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   

11.
Lu B  Zhang Q  Wang H  Wang Y  Nakayama M  Ren D 《Neuron》2010,68(3):488-499
In contrast to its extensively studied intracellular roles, the molecular mechanisms by which extracellular Ca(2+) regulates the basal excitability of neurons are unclear. One mechanism is believed to be through Ca(2+)'s interaction with the negative charges on the cell membrane (the charge screening effect). Here we show that, in cultured hippocampal neurons, lowering [Ca(2+)](e) activates a NALCN channel-dependent Na(+)-leak current (I(L-Na)). The coupling between [Ca(2+)](e) and NALCN requires a Ca(2+)-sensing G protein-coupled receptor, an activation of G-proteins, an UNC80 protein that bridges NALCN to a large novel protein UNC79 in the same complex, and the last amino acid of NALCN's intracellular tail. In neurons from nalcn and unc79 knockout mice, I(L-Na) is insensitive to changes in [Ca(2+)](e), and reducing [Ca(2+)](e) fails to elicit the excitatory effects seen in the wild-type. Therefore, extracellular Ca(2+) influences neuronal excitability through the UNC79-UNC80-NALCN complex in a G protein-dependent fashion.  相似文献   

12.
13.
Nitric oxide (NO) mediates pathogenic changes in the brain subsequent to energy deprivation; yet the NO mechanism involved in the early events remains unclear. We examined the acute effects of severe hypoxia and oxygen-glucose deprivation (OGD) on the endogenous NO production and the NO-mediated pathways involved in the intracellular calcium ([Ca(2+)](i)) response in the rat hippocampal neurons. The levels of NO and [Ca(2+)](i) in the CA1 region of the slices rapidly elevated in hypoxia and were more prominent in OGD, measured by the electrochemical method and spectrofluorometry, respectively. The NO and [Ca(2+)](i) responses were enhanced by L-arginine and were reduced by NO synthase inhibitors, suggesting that the endogenous NO increases the [Ca(2+)](i) response to energy deprivation. Nickel and nifedipine significantly decreased the NO and [Ca(2+)](i) responses to hypoxia and OGD, indicating an involvement of L-type Ca(2+) channels in the NO-mediated mechanisms. In addition, the [Ca(2+)](i) responses were attenuated by ODQ or KT5823, inhibitors of the cGMP-PKG pathway, and by acivicin, an inhibitor of gamma-glutamyl transpeptidase for S-nitrosylation, and by the thiol-alkylating agent N-ethylmaleimide (NEM). Moreover, L-type Ca(2+) currents in cultured hippocampal neurons with whole-cell recording were significantly increased by L-arginine and were decreased by L-NAME. Pretreatment with NO synthase inhibitors or NEM but not ODQ abolished the effect of L-arginine on the Ca(2+) currents. Also, vitamin C, which decomposes nitrosothiol but not disulfide by reduction, reversed the change in the Ca(2+) current with L-arginine. Taken together, the results suggest that an elevated endogenous NO production enhances the influx of Ca(2+) via the hippocampal L-type Ca(2+) channel by S-nitrosylation during an initial phase of energy deprivation.  相似文献   

14.
Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction.  相似文献   

15.
Changes in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in cultured hippocampal CA1 neurons isolated from newborn rats were measured by a confocal laser scanning microscope, using the Ca(2+) indicator Fluo-3. The results showed that exogenous adenosine (100 microM) significantly attenuated the increase of neuronal [Ca(2+)](i) induced by acute anoxia. This effect of adenosine could be suppressed by the adenosine A1 receptor antagonist 8-cyclopentyltheophylline. Moreover, potassium channel blockers, aminopyridine, and glipizide could also block the inhibitory role of adenosine, but tetraethylammonium had no effect. These results suggest that adenosine may activate 4-AP or ATP-sensitive potassium channels via an A1-receptor-mediated mechanism and consequently inhibit anoxia-induced [Ca(2+)](i) elevation in hippocampal neurons.  相似文献   

16.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

17.
We investigated the role of K(+) channels in the regulation of baseline intracellular free Ca(2+) concentration ([Ca(2+)](i)), alpha-adrenoreceptor-mediated Ca(2+) signaling, and capacitative Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). Inhibition of voltage-gated K(+) channels with 4-aminopyridine (4-AP) increased the membrane potential and the resting [Ca(2+)](i) but attenuated the amplitude and frequency of the [Ca(2+)](i) oscillations induced by the alpha-agonist phenylephrine (PE). Inhibition of Ca(2+)-activated K(+) channels (with charybdotoxin) and inhibition (with glibenclamide) or activation of ATP-sensitive K(+) channels (with lemakalim) had no effect on resting [Ca(2+)](i) or PE-induced [Ca(2+)](i) oscillations. Thapsigargin was used to deplete sarcoplasmic reticulum Ca(2+) stores in the absence of extracellular Ca(2+). Under these conditions, 4-AP attenuated the peak and sustained components of capacitative Ca(2+) entry, which was observed when extracellular Ca(2+) was restored. Capacitative Ca(2+) entry was unaffected by charybdotoxin, glibenclamide, or lemakalim. In isolated pulmonary arterial rings, 4-AP increased resting tension and caused a leftward shift in the KCl dose-response curve. In contrast, 4-AP decreased PE-induced contraction, causing a rightward shift in the PE dose-response curve. These results indicate that voltage-gated K(+) channel inhibition increases resting [Ca(2+)](i) and tone in PASMCs but attenuates the response to PE, likely via inhibition of capacitative Ca(2+) entry.  相似文献   

18.
We have studied cyclopiazonic acid (CPA)-sensitive store-operated Ca(2+) entry (SOCE) in cultured neurons and astrocytes and examined the effect of 2-[2-[4-(4-nitrobenzyloxy)phenyl]]isothiourea (KB-R7943), which is often used as a selective inhibitor of the Na(+)-Ca(2+) exchanger (NCX), on the SOCE. CPA increased transiently intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a sustained increase in [Ca(2+)](i) in neurons and astrocytes. The sustained increase in [Ca(2+)](i) depended on the presence of extracellular Ca(2+) and inhibited by SOCE inhibitors, but not by a Ca(2+) channel inhibitor. CPA also caused quenching of fura-2 fluorescence when the cells were incubated in Mn(2+)-containing medium. KB-R7943 at 10 microM inhibited significantly CPA-induced sustained increase in [Ca(2+)](i) in neurons and astrocytes. KB-R7943 also inhibited CPA-induced quenching of fura-2 fluorescence in the presence of extracellular Mn(2+). These results indicate that cultured neurons and astrocytes possess SOCE and that KB-R7943 inhibits not only NCX but also SOCE.  相似文献   

19.
Steroid hormones such as 17β-estradiol (E2) are known to modulate ion transporter expression in the kidney through classic intracellular receptors. Steroid hormones are also known to cause rapid nongenomic responses in a variety of nonrenal tissues. However, little is known about renal short-term effects of steroid hormones. Here, we studied the acute actions of E2 on intracellular Ca(2+) signaling in isolated distal convoluted tubules (DCT2), connecting tubules (CNT), and initial cortical collecting ducts (iCCD) by fluo 4 fluorometry. Physiological concentrations of E2 induced transient increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) in a subpopulation of cells. The [Ca(2+)](i) increases required extracellular Ca(2+) and were inhibited by Gd(3+). Strikingly, the classic E2 receptor antagonist ICI 182,780 also increased [Ca(2+)](i), which is inconsistent with the activation of classic E2 receptors. G protein-coupled estrogen receptor 1 (GPER1 or GPR30) was detected in microdissected DCT2/CNT/iCCD by RT-PCR. Stimulation with the specific GPER1 agonist G-1 induced similar [Ca(2+)](i) increases as E2, and in tubules from GPER1 knockout mice, E2, G-1, and ICI 182,780 failed to induce [Ca(2+)](i) elevations. The intercalated cells showed both E2-induced concanamycin-sensitive H(+)-ATPase activity by BCECF fluorometry and the E2-mediated [Ca(2+)](i) increment. We propose that E2 via GPER1 evokes [Ca(2+)](i) transients and increases H(+)-ATPase activity in intercalated cells in mouse DCT2/CNT/iCCD.  相似文献   

20.
Faber GM  Rudy Y 《Biophysical journal》2000,78(5):2392-2404
Sodium overload of cardiac cells can accompany various pathologies and induce fatal cardiac arrhythmias. We investigate effects of elevated intracellular sodium on the cardiac action potential (AP) and on intracellular calcium using the Luo-Rudy model of a mammalian ventricular myocyte. The results are: 1) During rapid pacing, AP duration (APD) shortens in two phases, a rapid phase without Na(+) accumulation and a slower phase that depends on [Na(+)](i). 2) The rapid APD shortening is due to incomplete deactivation (accumulation) of I(Ks). 3) The slow phase is due to increased repolarizing currents I(NaK) and reverse-mode I(NaCa), secondary to elevated [Na(+)](i). 4) Na(+)-overload slows the rate of AP depolarization, allowing time for greater I(Ca(L)) activation; it also enhances reverse-mode I(NaCa). The resulting increased Ca(2+) influx triggers a greater [Ca(2+)](i) transient. 5) Reverse-mode I(NaCa) alone can trigger Ca(2+) release in a voltage and [Na(+)](i)-dependent manner. 6) During I(NaK) block, Na(+) and Ca(2+) accumulate and APD shortens due to enhanced reverse-mode I(NaCa); contribution of I(K(Na)) to APD shortening is negligible. By slowing AP depolarization (hence velocity) and shortening APD, Na(+)-overload acts to enhance inducibility of reentrant arrhythmias. Shortened APD with elevated [Ca(2+)](i) (secondary to Na(+)-overload) also predisposes the myocardium to arrhythmogenic delayed afterdepolarizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号