首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most cystic fibrosis (CF) patients carry the F508del mutation in the CFTR chloride channel protein resulting in its misassembly, retention in the endoplasmic reticulum (ER), and proteasomal degradation. Therefore, characterization of the retention and attempts to rescue the mutant CFTR are a major focus of CF research. Earlier, we had shown that four arginine-framed tripeptide (AFT) signals in CFTR participate in the quality control. Now we have mutated these four AFTs in all possible combinations and found that simultaneous inactivation of two of them (R29K and R555K) is necessary and sufficient to overcome F508del CFTR retention. Immunofluorescence staining of BHK cells expressing this variant indicates that it matures and is routed to the plasma membrane. Acquisition of at least some wild-type structure was detected in the pattern of proteolytic digestion fragments. Functional activity at the cell surface was evident in chloride efflux assays. However, single channel activity of the rescued mutant measured in planar lipid bilayers diminished as temperature was increased from 30 to 37 °C. These findings support the idea that absence of Phe 508 causes not only a kinetic folding defect but also steady-state structural instability. Therefore effective molecular therapies developed to alleviate disease caused by F508del and probably other misprocessing mutants will require overcoming both their kinetic and steady-state impacts.  相似文献   

2.
Most patients with Cystic Fibrosis (CF) carry at least one allele with the F508del mutation, resulting in a CFTR chloride channel protein with a processing, gating and stability defect, but with substantial residual activity when correctly sorted to the apical membranes of epithelial cells. New therapies are therefore aimed at improving the folding and trafficking of F508del CFTR, (CFTR correctors) or at enhancing the open probability of the CFTR chloride channel (CFTR potentiators). Preventing premature breakdown of F508del CFTR is an alternative or additional strategy, which is investigated in this study. We established an ex vivo assay for murine F508del CFTR rescue in native intestinal epithelium that can be used as a pre-clinical test for candidate therapeutics. Overnight incubation of muscle stripped ileum in modified William''s E medium at low temperature (26°C), and 4 h or 6 h incubation at 37°C with different proteasome inhibitors (PI: ALLN, MG-132, epoxomicin, PS341/bortezomib) resulted in fifty to hundred percent respectively of the wild type CFTR mediated chloride secretion (forskolin induced short-circuit current). The functional rescue was accompanied by enhanced expression of the murine F508del CFTR protein at the apical surface of intestinal crypts and a gain in the amount of complex-glycosylated CFTR (band C) up to 20% of WT levels. Sustained rescue in the presence of brefeldin A shows the involvement of a post-Golgi compartment in murine F508del CFTR degradation, as was shown earlier for its human counterpart. Our data show that proteasome inhibitors are promising candidate compounds for improving rescue of human F508del CFTR function, in combination with available correctors and potentiators.  相似文献   

3.
Cystic fibrosis (CF), the most common lethal genetic disease in the Caucasian population, is caused by loss-of-function mutations of the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated plasma membrane chloride channel. The most common mutation, deletion of phenylalanine 508 (ΔF508), impairs CFTR folding and, consequently, its biosynthetic and endocytic processing as well as chloride channel function. Pharmacological treatments may target the ΔF508 CFTR structural defect directly by binding to the mutant protein and/or indirectly by altering cellular protein homeostasis (proteostasis) to promote ΔF508 CFTR plasma membrane targeting and stability. This review discusses recent basic research aimed at elucidating the structural and trafficking defects of ΔF508 CFTR, a prerequisite for the rational design of CF therapy to correct the loss-of-function phenotype.  相似文献   

4.
The major cystic fibrosis mutation F508del has been classified by experiments in animal and cell culture models as a temperature-sensitive mutant defective in protein folding, processing and trafficking, but literature data on F508del CFTR maturation and function in human tissue are inconsistent. In the present study the molecular pathology of F508del CFTR was characterized in freshly excised rectal mucosa by bioelectric measurement of the basic defect and CFTR protein analysis by metabolic labelling or immunoblot. The majority of investigated F508del homozygous subjects expressed low amounts of complex-glycosylated mature F508del CFTR and low residual F508del CFTR-mediated chloride secretory activity in the rectal mucosa. The finding that some F508del CFTR escapes the ER quality control in vivo substantiates the hope that the defective processing and trafficking of F508del CFTR can be corrected by pharmacological agents.  相似文献   

5.
BACKGROUND: Cystic fibrosis (CF) results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel localized at the plasma membrane of diverse epithelia. The most common mutation leading to CF, Delta F508, occurs in the first nucleotide-binding domain (NBD1) of CFTR. The Delta F508 mutation disrupts protein processing, leading to a decreased level of mutant channels at the plasma membrane and reduced transepithelial chloride permeability. Partial correction of the Delta F508 molecular defect in vitro is achieved by incubation of cells with several classes of chemical chaperones, indicating that further investigation of novel small molecules is warranted as a means for producing new therapies for CF. MATERIALS AND METHODS: The yeast two-hybrid assay was used to study the effect of CF-causing mutations on the ability of NBD1 to self-associate and form dimers. A yeast strain demonstrating defective growth as a result of impaired NBD1 dimerization due to Delta F508 was used as a drug discovery bioassay for the identification of plant natural product compounds restoring mutant NBD1 interaction. Active compounds were purified and the chemical structures determined. The purified compounds were tested in epithelial cells expressing CFTR Delta F508 and the resulting effect on transepithelial chloride permeability was assessed using short-circuit chloride current measurements. RESULTS: Wild-type NBD1 of CFTR forms homodimers in a yeast two-hybrid assay. CF-causing mutations within NBD1 that result in defective processing of CFTR (Delta F508, Delta I507, and S549R) disrupted NBD1 interaction in yeast. In contrast, a CF-causing mutation that does not impair CFTR processing (G551D) had no effect on NBD1 dimerization. Using the yeast-based assay, we identified a novel limonoid compound (TS3) that corrected the Delta F508 NBD1 dimerization defect in yeast and also increased the chloride permeability of Fisher Rat Thyroid (FRT) cells stably expressing CFTR Delta F508. CONCLUSION: The establishment of a phenotype for the Delta F508 mutation in the yeast two-hybrid system yielded a simple assay for the identification of small molecules that interact with the mutant NBD1 and restore dimerization. The natural product compound identified using the system (TS3) was found to increase chloride conductance in epithelial cells to an extent comparable to genistein, a known CFTR activator. The yeast system will thus be useful for further identification of compounds with potential for CF drug therapy.  相似文献   

6.
Mutational analysis of the cystic fibrosis transmembrane regulator (CFTR) gene was performed in 98 unrelated CF chromosomes from 49 Lithuanian CF patients through a combined approach in which the p.F508del mutation was first screened by allele-specific PCR while CFTR mutations in nonp.F508del chromosomes have been screened for by denaturing gradient gel electrophoresis analysis. A CFTR mutation was characterized in 62.2% of CF chromosomes, two of which (2.0%) have been previously shown to carry a large gene deletion CFTRdele2,3(21 kb). The most frequent Lithuanian CF mutation is p.F508del (52.0%). Seven CFTR mutations, p.N1303K (2.0%), p.R75Q (1.0%), p.G314R (1.0%), p.R553X (4.2%), p.W1282X (1.0%), and g.3944delGT (1.0%), accounted for 10.1% of Lithuanian CF chromosomes. It was not possible to characterize 35.8% of the CF Lithuanian chromosomes. Analysis of intron 8 (TG)mTn and M470V polymorphic loci did not permit the characterization of the CFTR dysfunction underlying the CF phenotype in the patients for which no CFTR mutation was identified. Thus, screening of the eight CFTR mutations identified in this study and of the large deletion CFTRdele2,3(21 kb) allows the implementation of an early molecular or confirmatory CF diagnosis for 65% of Lithuanian CF chromosomes.  相似文献   

7.
The F508del mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis (CF). Both CF patients and F508del carriers have decreased blood pressure. While this has been attributed to salt depletion, recent studies have shown F508del expression interferes with smooth muscle cell calcium mobilization. We tested the hypothesis that carriers of the F508del mutation have lower adult blood pressures and reduced aortic contractility without a reduction in circulating blood volume. By radiotelemetry, F508del heterozygous mice had significantly lower arterial pressures than wild-type C57BL/6 controls, with the greatest effect seen at the time of dark-to-light cycle transition (mean difference of 10 mmHg). To replicate the vascular effects of sympathetic arousal, isoproterenol and epinephrine were co-infused, and F508del mice again had significantly reduced arterial pressures. Aortas isolated from F508del heterozygous mice had significantly decreased constriction to noradrenaline (0.9±0.2 versus 2.9±0.7 mN). Inhibition of wild-type CFTR or the inositol triphosphate receptor replicated the phenotype of F508del aortas. CFTR carrier status did not alter circulating blood volume. We conclude the CFTR-F508del mutation decreases aortic contractility and lowers arterial pressures. As a cAMP-activated chloride channel that facilitates calcium mobilization, we speculate wild-type CFTR co-activation during adrenergic receptor stimulation buffers the vasodilatory response to catecholamines, and loss of this compensatory vasoconstrictor tone may contribute to the lower arterial pressures seen in heterozygote carriers of a CFTR-F508del mutation.  相似文献   

8.
The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.  相似文献   

9.
Cystic fibrosis (CF) is an autosomal disease associated with malfunction in fluid and electrolyte transport across several mucosal membranes. The most common mutation in CF is an in-frame three-base pair deletion that removes a phenylalanine at position 508 in the first nucleotide-binding domain of the cystic fibrosis conductance regulator (CFTR) chloride channel. This mutation has been studied extensively and leads to biosynthetic arrest of the protein in the endoplasmic reticulum and severely reduced channel activity. This review discusses a novel method of rescuing ΔF508 with transcomplementation, which occurs when smaller fragments of CFTR containing the wild-type nucleotide binding domain are co-expressed with the F508 deletion mutant. Transcomplementation rescues the processing and channel activity of ΔF508 and reduces its rate of degradation in airway epithelial cells. To apply transcomplementation as a therapy would require that the cDNA encoding the truncated CFTR be delivered to cells. We also discuss a gene therapeutic approach based on delivery of a truncated form of CFTR to airway cells using adeno-associated viral vectors.  相似文献   

10.
In many cells, increase in intracellular calcium ([Ca(2+)](i)) activates a Ca(2+)-dependent chloride (Cl(-)) conductance (CaCC). CaCC is enhanced in cystic fibrosis (CF) epithelial cells lacking Cl(-) transport by the CF transmembrane conductance regulator (CFTR). Here, we show that in freshly isolated nasal epithelial cells of F508del-homozygous CF patients, expression of TMEM16A and bestrophin 1 was unchanged. However, calcium signaling was strongly enhanced after induction of expression of F508del-CFTR, which is unable to exit the endoplasmic reticulum (ER). Since receptor-mediated [Ca(2+)](i) increase is Cl(-) dependent, we suggested that F508del-CFTR may function as an ER chloride counter-ion channel for Ca(2+). This was confirmed by expression of the double mutant F508del/G551D-CFTR, which remained in the ER but had no effects on [Ca(2+)](i). Moreover, F508del-CFTR could serve as a scavenger for inositol-1,4,5-trisphosphate [IP3] receptor binding protein released with IP(3) (IRBIT). Our data may explain how ER-localized F508del-CFTR controls intracellular Ca(2+) signaling.  相似文献   

11.
Numerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane. We developed a fluorescence detection platform using fluorogen-activating proteins (FAPs) to directly detect FAP-CFTR trafficking to the cell surface using a cell-impermeant probe. By using this approach, we determined the efficacy of new corrector compounds, both alone and in combination, to rescue F508del-CFTR to the plasma membrane. Combinations of correctors produced additive or synergistic effects, improving the density of mutant CFTR at the cell surface up to ninefold over a single-compound treatment. The results correlated closely with assays of stimulated anion transport performed in polarized human bronchial epithelia that endogenously express F508del-CFTR. These findings indicate that the FAP-tagged constructs faithfully report mutant CFTR correction activity and that this approach should be useful as a screening assay in diseases that impair protein trafficking to the cell surface.  相似文献   

12.
Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.  相似文献   

13.
Although lung disease is the major cause of mortality in cystic fibrosis (CF), gastrointestinal (GI) manifestations are the first hallmarks in 15–20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5) inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg) used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF pharmacotherapy.  相似文献   

14.
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.  相似文献   

15.
Most cystic fibrosis (CF) cases are caused by the ΔF508 mutation in the CF transmembrane conductance regulator (CFTR), which disrupts both the processing and gating of this chloride channel. The cell surface expression of ΔF508-CFTR can be "rescued" by culturing cells at 26-28 °C and treating cells with small molecule correctors or intragenic suppressor mutations. Here, we determined whether these various rescue protocols induce a ΔF508-CFTR conformation that is thermally stable in excised membrane patches. We also tested the impact of constitutive cytosolic loop mutations that increase ATP-independent channel activity (K978C and K190C/K978C) on ΔF508-CFTR function. Low temperature-rescued ΔF508-CFTR channels irreversibly inactivated with a time constant of 5-6 min when excised patches were warmed from 22 °C to 36.5 °C. A panel of CFTR correctors and potentiators that increased ΔF508-CFTR maturation or channel activity failed to prevent this inactivation. Conversely, three suppressor mutations in the first nucleotide binding domain rescued ΔF508-CFTR maturation and stabilized channel activity at 36.5 °C. The constitutive loop mutations increased ATP-independent activity of low temperature-rescued ΔF508-CFTR but did not enhance protein maturation. Importantly, the ATP-independent activities of these ΔF508-CFTR constructs were stable at 36.5 °C, whereas their ATP-dependent activities were not. Single channel recordings of this thermally stable ATP-independent activity revealed dynamic gating and unitary currents of normal amplitudes. We conclude that: (i) ΔF508-CFTR gating is highly unstable at physiologic temperature; (ii) most rescue protocols do not prevent this thermal instability; and (iii) ATP-independent gating and the pore are spared from ΔF508-induced thermal instability, a finding that may inform alternative treatment strategies.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride channel comprising two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs) and a unique regulatory (R) domain. The most frequent cystic fibrosis (CF) mutation, a deletion of Phe508 in NBD1, results in the retention of the DeltaF508 CFTR in the endoplasmic reticulum, as do many other natural or constructed mutations located within the first NBD. In order to further define the role of NBD1 in CFTR folding and to determine whether the higher frequency of mutations in NBD1 with respect to NBD2 results from its position in the molecule or is related to its primary sequence, we constructed and expressed chimeric CFTRs wherein NBD domains were either exchanged or deleted. Synthesis, maturation and activity of the chimeras were assessed by Western blotting and iodide efflux assay after transient or stable expression in COS-1 or CHO cells respectively. The data showed that deletion of NBD1 prevented transport of CFTR to the cytoplasmic membrane whereas deletion of NBD2 did not impair this process but resulted in an inactive chloride channel. On the other hand, substituting or inverting NBDs in the CFTR molecule impaired its processing. In addition, while the NBD1 R555K mutation is known to partially correct the processing of CFTR DeltaF508 and to increase activity of both wild-type and DeltaF508 individual channels, it showed no positive effect when introduced into the double NBD1 chimera. Taken together, these observations suggest that the proper folding process of CFTR results from complex interactions between NBDs and their surrounding domains (MSDs and/or R domain).  相似文献   

17.
Deletion of Phe508 from cystic fibrosis transmembrane conductance regulator (CFTR) results in a temperature-sensitive folding defect that impairs protein maturation and chloride channel function. Both of these adverse effects, however, can be mitigated to varying extents by second-site suppressor mutations. To better understand the impact of second-site mutations on channel function, we compared the thermal sensitivity of CFTR channels in Xenopus oocytes. CFTR-mediated conductance of oocytes expressing wt or ΔF508 CFTR was stable at 22 °C and increased at 28 °C, a temperature permissive for ΔF508 CFTR expression in mammalian cells. At 37 °C, however, CFTR-mediated conductance was further enhanced, whereas that due to ΔF508 CFTR channels decreased rapidly toward background, a phenomenon referred to here as "thermal inactivation." Thermal inactivation of ΔF508 was mitigated by each of five suppressor mutations, I539T, R553M, G550E, R555K, and R1070W, but each exerted unique effects on the severity of, and recovery from, thermal inactivation. Another mutation, K1250A, known to increase open probability (P(o)) of ΔF508 CFTR channels, exacerbated thermal inactivation. Application of potentiators known to increase P(o) of ΔF508 CFTR channels at room temperature failed to protect channels from inactivation at 37 °C and one, PG-01, actually exacerbated thermal inactivation. Unstimulated ΔF508CFTR channels or those inhibited by CFTR(inh)-172 were partially protected from thermal inactivation, suggesting a possible inverse relationship between thermal stability and gating transitions. Thermal stability of channel function and temperature-sensitive maturation of the mutant protein appear to reflect related, but distinct facets of the ΔF508 CFTR conformational defect, both of which must be addressed by effective therapeutic modalities.  相似文献   

18.
We have previously shown that the CBb subunit of crotoxin, a β-neurotoxin with phospholipase A2 (PLA2) activity, targets the human ΔF508CFTR chloride channel implicated in cystic fibrosis (CF). By direct binding to the nucleotide binding domain 1 (NBD1) of ΔF508CFTR, this neurotoxic PLA2 acts as a potentiator increasing chloride channel current and corrects the trafficking defect of misfolded ΔF508CFTR inside the cell.Here, for a therapeutics development of new anti-cystic fibrosis agents, we use a structure-based in silico approach to design peptides mimicking the CBb-ΔF508NBD1 interface. Combining biophysical and electrophysiological methods, we identify several peptides that interact with the ΔF508NBD1 domain and reveal their effects as potentiators on phosphorylated ΔF508CFTR. Moreover, protein-peptide interactions and electrophysiological studies allowed us to identify key residues of ΔF508NBD1 governing the interactions with the novel potentiators. The designed peptides bind to the same region as CBb phospholipase A2 on ΔF508NBD1 and potentiate chloride channel activity. Certain peptides also show an additive effect towards the clinically approved VX-770 potentiator. The identified CF therapeutics peptides represent a novel class of CFTR potentiators and illustrate a strategy leading to reproducing the effect of specific protein–protein interactions.  相似文献   

19.
Cystic fibrosis (CF) is caused by mutations that disrupt the surface localization and/or gating of the CF transmembrane conductance regulator (CFTR) chloride channel. The most common CF mutant is deltaF508-CFTR, which inefficiently traffics to the surfaces of most cells. The deltaF508 mutation may also disrupt the opening of CFTR channels once they reach the cell surface, but the extent of this gating defect is unclear. Here, we describe potent activators of wild-type and deltaF508-CFTR channels that are structurally related to 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), a negatively charged pore blocker that we show to have mixed agonistic activity (channel activation plus voltage-dependent pore block). These CFTR agonists include 1) an uncharged NPPB analog that stimulates channel opening at submicromolar concentrations without blocking the pore and 2) curcumin, a dietary compound recently reported to augment deltaF508-CFTR function in mice by an unknown mechanism. The uncharged NPPB analog enhanced the activities of wild-type and deltaF508-CFTR channels both in excised membrane patches and in intact epithelial monolayers. This compound increased the open probabilities of deltaF508-CFTR channels in excised membrane patches by 10-15-fold under conditions in which wild-type channels were already maximally active. Our results support the emerging view that CFTR channel activity is substantially reduced by the deltaF508 mutation and that effective CF therapies may require the use of channel openers to activate mutant CFTR channels at the cell surface.  相似文献   

20.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors"), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers") that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号