首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the mechanism of kinesin movement we have investigated the relative configuration of the two kinesin motor domains during ATP hydrolysis using fluorescence polarization microscopy of ensemble and single molecules. We found that: (i) in nucleotide states that induce strong microtubule binding, both motor domains are bound to the microtubule with similar orientations; (ii) this orientation is maintained during processive motion in the presence of ATP; (iii) the neck-linker region of the motor domain has distinct configurations for each nucleotide condition tested. Our results fit well with a hand-over-hand type movement mechanism and suggest how the ATPase cycle in the two motor domains is coordinated. We propose that the motor neck-linker domain configuration controls ADP release.  相似文献   

2.
Allingham JS  Sproul LR  Rayment I  Gilbert SP 《Cell》2007,128(6):1161-1172
Conventional kinesin and class V and VI myosins coordinate the mechanochemical cycles of their motor domains for processive movement of cargo along microtubules or actin filaments. It is widely accepted that this coordination is achieved by allosteric communication or mechanical strain between the motor domains, which controls the nucleotide state and interaction with microtubules or actin. However, questions remain about the interplay between the strain and the nucleotide state. We present an analysis of Saccharomyces cerevisiae Kar3/Vik1, a heterodimeric C-terminal Kinesin-14 containing catalytic Kar3 and the nonmotor protein Vik1. The X-ray crystal structure of Vik1 exhibits a similar fold to the kinesin and myosin catalytic head, but lacks an ATP binding site. Vik1 binds more tightly to microtubules than Kar3 and facilitates cooperative microtubule decoration by Kar3/Vik1 heterodimers, and yet allows motility. These results demand communication between Vik1 and Kar3 via a mechanism that coordinates their interactions with microtubules.  相似文献   

3.
Role of the Kinesin Neck Region in Processive Microtubule-based Motility   总被引:8,自引:3,他引:5  
Kinesin is a dimeric motor protein that can move along a microtubule for several microns without releasing (termed processive movement). The two motor domains of the dimer are thought to move in a coordinated, hand-over-hand manner. A region adjacent to kinesin's motor catalytic domain (the neck) contains a coiled coil that is sufficient for motor dimerization and has been proposed to play an essential role in processive movement. Recent models have suggested that the neck enables head-to-head communication by creating a stiff connection between the two motor domains, but also may unwind during the mechanochemical cycle to allow movement to new tubulin binding sites. To test these ideas, we mutated the neck coiled coil in a 560-amino acid (aa) dimeric kinesin construct fused to green fluorescent protein (GFP), and then assayed processivity using a fluorescence microscope that can visualize single kinesin–GFP molecules moving along a microtubule. Our results show that replacing the kinesin neck coiled coil with a 28-aa residue peptide sequence that forms a highly stable coiled coil does not greatly reduce the processivity of the motor. This result argues against models in which extensive unwinding of the coiled coil is essential for movement. Furthermore, we show that deleting the neck coiled coil decreases processivity 10-fold, but surprisingly does not abolish it. We also demonstrate that processivity is increased by threefold when the neck helix is elongated by seven residues. These results indicate that structural features of the neck coiled coil, although not essential for processivity, can tune the efficiency of single molecule motility.  相似文献   

4.
A variety of models have recently emerged to explain how the molecular motor kinesin is able to maintain processive movement for over 100 steps. Although these models differ in significant features, they all predict that kinesin's catalytic domains intermittently separate from each other as the motor takes 8-nm steps along the microtubule. Furthermore, at some point in this process, one molecule of ATP is hydrolyzed per step. However, exactly when hydrolysis and product release occur in relation to this forward step have not been established. Furthermore, the rate at which this separation occurs as well as the speed of motor stepping onto and release from the microtubule have not been measured. In the absence of this information, it is difficult to critically evaluate competing models of kinesin function. We have addressed this issue by developing spectroscopic probes whose fluorescence is sensitive to motor-motor separation or microtubule binding. The kinetics of these fluorescence changes allow us to directly measure how fast kinesin steps onto and releases from the microtubule and provide insight into how processive movement is maintained by this motor.  相似文献   

5.
During the last 25?years, a vast amount of research has gone into understanding the mechanochemical cycle of kinesin-1 and similar processive motor proteins. An experimental method that has been widely used to this effect is the in vitro study of kinesin-1 molecules moving along microtubules while pulling a bead, the position of which is monitored optically while trapped in a laser focus. Analysing results from such experiments, in which thermally excited water molecules are violently buffeting the system components, can be quite difficult. At low loads, the effect of the mechanical properties of the entire molecule must be taken into account, as stalk compliance means the bead position recorded is only weakly coupled to the movement of the motor domains, the sites of ATP hydrolysis and microtubule binding. In the present review, findings on the mechanical and functional properties of the various domains of full-length kinesin-1 molecules are summarized and a computer model is presented that uses this information to simulate the motion of a bead carried by a kinesin molecule along a microtubule, with and without a weak optical trap present. A video sequence made from individual steps of the simulation gives a three-dimensional visual insight into these types of experiment at the molecular level.  相似文献   

6.
Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or “heads”, to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Å resolution, 3D reconstructions of kinesin-1?microtubule complexes for all three of this motor’s principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution crystallography data to synthesize an atomic-level "seesaw" mechanism describing how microtubules activate kinesin’s ATP-sensing machinery. The new structural information revises or replaces key details of earlier models of kinesin’s ATPase cycle that were based principally on crystal structures of free kinesin, and demonstrates that high-resolution characterization of the kinesin–microtubule complex is essential for understanding the structural basis of the cycle. I discuss the broader implications of the seesaw mechanism within the cycle of a fully functional kinesin dimer and show how the seesaw can account for two types of "gating" that keep the ATPase cycles of the two heads out of sync during processive movement.  相似文献   

7.
Kinesins form a large and diverse superfamily of proteins involved in numerous important cellular processes. The majority of them are molecular motors moving along microtubules. Conversion of chemical energy into mechanical work is accomplished in a sequence of events involving both biochemical and conformational alternation of the motor structure called the mechanochemical cycle. Different members of the kinesin superfamily can either perform their function in large groups or act as single molecules. Conventional kinesin, a member of the kinesin-1 subfamily, exemplifies the second type of motor which requires tight coordination of the mechanochemical cycle in two identical subunits to accomplish processive movement toward the microtubule plus end. Recent results strongly support an asymmetric hand-over-hand model of "walking" for this protein. Conformational strain between two subunits at the stage of the cycle where both heads are attached to the microtubule seems to be a major factor in intersubunit coordination, although molecular and kinetic details of this phenomenon are not yet deciphered. We discuss also current knowledge concerning intersubunit coordination in other kinesin subfamilies. Members of the kinesin-3 class use at least three different mechanisms of movement and can translocate in monomeric or dimeric forms. It is not known to what extent intersubunit coordination takes place in Ncd, a dimeric member of the kinesin-14 subfamily which, unlike conventional kinesin, exercises a power-stroke toward the microtubule minus end. Eg5, a member of the kinesin-5 subfamily is a homotetrameric protein with two kinesin-1-like dimeric halves controlled by their relative orientation on two microtubules. It seems that diversity of subunit organization, quaternary structures and cellular functions in the kinesin superfamily are reflected also by the divergent extent and mechanism of intersubunit coordination during kinesin movement along microtubules.  相似文献   

8.
Shimizu T  Thorn KS  Ruby A  Vale RD 《Biochemistry》2000,39(18):5265-5273
Conventional kinesin is a microtubule-based motor protein that is an important model system for understanding mechanochemical transduction. To identify regions of the kinesin protein that participate in microtubule binding and force production, Woehlke et al. [(1997) Cell 90, 207-216] generated 35 alanine mutations in solvent-exposed residues. Here, we have performed presteady-state kinetic and single molecule motility analyses on three of these mutants [Y138A, loop 11 triple (L248A/D249A/E250A), and E311A] that exhibited a similar approximately 3-fold reduction in both microtubule gliding velocity and microtubule-stimulated ATPase activity. All mutants showed normal second-order ATP binding kinetics, indicating correct folding of the active site. The Y138A and loop 11 triple mutants were defective both in nucleotide hydrolysis and in microtubule-stimulated ADP release rates, the latter suggesting a defect in allosteric communication between the microtubule and the active site. A single molecule fluorescence assay further revealed that the loop 11 mutant is defective in initiating processive motion, suggesting that this loop is important for the initial contact between kinesin and the microtubule. Y138A, on the other hand, can bind to the microtubule normally but cannot move processively. For E311A, neither the rate of nucleotide hydrolysis nor ADP release could account for its slower ATPase and gliding velocity, which suggests that either phosphate release or a conformational transition is rate-limiting in this mutant. The single molecule assay showed that E311A has a reduced velocity of movement, but is not defective in processivity. Thus, while these mutants behave similarly in solution ATPase and multiple motor gliding assays, kinetic and single molecule analyses reveal defects in distinct processes in kinesin's mechanochemical cycle.  相似文献   

9.
Seitz A  Surrey T 《The EMBO journal》2006,25(2):267-277
Kinesin-1 is a processive molecular motor transporting cargo along microtubules. Inside cells, several motors and microtubule-associated proteins compete for binding to microtubules. Therefore, the question arises how processive movement of kinesin-1 is affected by crowding on the microtubule. Here we use total internal reflection fluorescence microscopy to image in vitro the runs of single quantum dot-labelled kinesins on crowded microtubules under steady-state conditions and to measure the degree of crowding on a microtubule at steady-state. We find that the runs of kinesins are little affected by high kinesin densities on a microtubule. However, the presence of high densities of a mutant kinesin that is not able to step efficiently reduces the average speed of wild-type kinesin, while hardly changing its processivity. This indicates that kinesin waits in a strongly bound state on the microtubule when encountering an obstacle until the obstacle unbinds and frees the binding site for kinesin's next step. A simple kinetic model can explain quantitatively the behaviour of kinesin under both crowding conditions.  相似文献   

10.
Conventional kinesin has a double-headed structure consisting of two motor domains and moves processively along a microtubule using the two heads cooperatively. The movement of single and multiple truncated heads of Drosophila kinesin was measured using a laser trap and nanometer detecting apparatus. Single molecules of single-headed kinesin bound to the microtubules with a 3.5 nm biased displacement toward the plus end of the microtubule. The position of these single-headed kinesin molecules bound to a microtubule did not change until they had dissociated, indicating that single kinesin heads utilize nonprocessive movement processes. Two molecules of single-headed kinesin moved continuously along a microtubule with a lower velocity and force than that of single molecules of double-headed kinesin. The biased binding of the heads determines the directionality of movement, whereas two molecules of single-headed kinesin move continuously without dissociation from a microtubule.  相似文献   

11.
Eg5/KSP is the kinesin-related motor protein that generates the major plus-end directed force for mitotic spindle assembly and dynamics. Recent work using a dimeric form of Eg5 has found it to be a processive motor; however, its mechanochemical cycle is different from that of conventional Kinesin-1. Dimeric Eg5 appears to undergo a conformational change shortly after collision with the microtubule that primes the motor for its characteristically short processive runs. To better understand this conformational change as well as head-head communication during processive stepping, equilibrium and transient kinetic approaches have been used. By contrast to the mechanism of Kinesin-1, microtubule association triggers ADP release from both motor domains of Eg5. One motor domain releases ADP rapidly, whereas ADP release from the other occurs after a slow conformational change at approximately 1 s(-1). Therefore, dimeric Eg5 begins its processive run with both motor domains associated with the microtubule and in the nucleotide-free state. During processive stepping however, ATP binding and potentially ATP hydrolysis signals rearward head advancement 16 nm forward to the next microtubule-binding site. This alternating cycle of processive stepping is proposed to terminate after a few steps because the head-head communication does not sufficiently control the timing to prevent both motor domains from entering the ADP-bound state simultaneously.  相似文献   

12.
The processive movement of single-headed kinesins is studied by using a ratchet model of non-Markov process, which is built on the experimental evidence that the strong binding of kinesin to microtubule in rigor state induces a large apparent change in the local microtubule conformation. In the model, the microtubule plays a crucial active role in the kinesin movement, in contrast to the previous belief that the microtubule only acts as a passive track for the kinesin motility. The unidirectional movement of single-headed kinesin is resulted from the asymmetric periodic potential between kinesin and microtubule while its processivity is determined by its binding affinity for microtubule in the weak ADP state. Using the model, various experimental results for monomeric kinesin KIF1A, such as the mean step size, the step-size distribution, the long run length and the mean velocity versus load, can be well explained quantitatively. This local conformational change of the microtubule may also play important roles in the processive movement of conventional two-headed kinesins. An experiment to verify the model is suggested.  相似文献   

13.
The role of ATP hydrolysis for kinesin processivity   总被引:1,自引:0,他引:1  
Conventional kinesin is a highly processive, plus-end-directed microtubule-based motor that drives membranous organelles toward the synapse in neurons. Although recent structural, biochemical, and mechanical measurements are beginning to converge into a common view of how kinesin converts the energy from ATP turnover into motion, it remains difficult to dissect experimentally the intermolecular domain cooperativity required for kinesin processivity. We report here our pre-steady-state kinetic analysis of a kinesin switch I mutant at Arg(210) (NXXSSRSH, residues 205-212 in Drosophila kinesin). The results show that the R210A substitution results in a dimeric kinesin that is defective for ATP hydrolysis and a motor that cannot detach from the microtubule although ATP binding and microtubule association occur. We propose a mechanistic model in which ATP binding at head 1 leads to the plus-end-directed motion of the neck linker to position head 2 forward at the next microtubule binding site. However, ATP hydrolysis is required at head 1 to lock head 2 onto the microtubule in a tight binding state before head 1 dissociation from the microtubule. This mechanism optimizes forward movement and processivity by ensuring that one motor domain is tightly bound to the microtubule before the second can detach.  相似文献   

14.
Ping Xie  Shuo-Xing Dou  Peng-Ye Wang 《BBA》2007,1767(12):1418-1427
The processive movement of single-headed kinesins is studied by using a ratchet model of non-Markov process, which is built on the experimental evidence that the strong binding of kinesin to microtubule in rigor state induces a large apparent change in the local microtubule conformation. In the model, the microtubule plays a crucial active role in the kinesin movement, in contrast to the previous belief that the microtubule only acts as a passive track for the kinesin motility. The unidirectional movement of single-headed kinesin is resulted from the asymmetric periodic potential between kinesin and microtubule while its processivity is determined by its binding affinity for microtubule in the weak ADP state. Using the model, various experimental results for monomeric kinesin KIF1A, such as the mean step size, the step-size distribution, the long run length and the mean velocity versus load, can be well explained quantitatively. This local conformational change of the microtubule may also play important roles in the processive movement of conventional two-headed kinesins. An experiment to verify the model is suggested.  相似文献   

15.
Kinesin is an ATP-driven molecular motor that moves processively along a microtubule. Processivity has been explained as a mechanism that involves alternating single- and double-headed binding of kinesin to microtubules coupled to the ATPase cycle of the motor. The internal load imposed between the two bound heads has been proposed to be a key factor regulating the ATPase cycle in each head. Here we show that external load imposed along the direction of motility on a single kinesin molecule enhances the binding affinity of ADP for kinesin, whereas an external load imposed against the direction of motility decreases it. This coupling between loading direction and enzymatic activity is in accord with the idea that the internal load plays a key role in the unidirectional and cooperative movement of processive motors.  相似文献   

16.
Processivity of the Motor Protein Kinesin Requires Two Heads   总被引:11,自引:3,他引:8  
A single kinesin molecule can move for hundreds of steps along a microtubule without dissociating. One hypothesis to account for this processive movement is that the binding of kinesin's two heads is coordinated so that at least one head is always bound to the microtubule. To test this hypothesis, the motility of a full-length single-headed kinesin heterodimer was examined in the in vitro microtubule gliding assay. As the surface density of single-headed kinesin was lowered, there was a steep fall both in the rate at which microtubules landed and moved over the surface, and in the distance that microtubules moved, indicating that individual single-headed kinesin motors are not processive and that some four to six single-headed kinesin molecules are necessary and sufficient to move a microtubule continuously. At high ATP concentration, individual single-headed kinesin molecules detached from microtubules very slowly (at a rate less than one per second), 100-fold slower than the detachment during two-headed motility. This slow detachment directly supports a coordinated, hand-over-hand model in which the rapid detachment of one head in the dimer is contingent on the binding of the second head.  相似文献   

17.
Conventional kinesin is capable of long-range, processive movement along microtubules, a property that has been assumed to be important for its role in membrane transport. Here we have investigated whether the Caenorhabditis elegans monomeric kinesin unc104 and the sea urchin heteromeric kinesin KRP85/95, two other members of the kinesin superfamily that function in membrane transport, are also processive. Both motors were fused to green fluorescent protein, and the fusion proteins were tested for processive ability using a single-molecule fluorescence imaging microscope. Neither unc104-GFP nor KRP85/95-GFP exhibited processive movement (detection limit approximately 40 nm), although both motors were functional in multiple motor microtubule gliding assays (v = 1760 +/- 540 and 202 +/- 37 nm/s, respectively). Moreover, the ATP turnover rates (5.5 and 3.1 ATPs per motor domain per second, respectively) are too low to give rise to the observed microtubule gliding velocities, if only a single motor were driving transport with an 8 nm step per ATPase cycle. Instead, the results suggest that these motors have low duty cycles and that high processivity may not be required for efficient vesicle transport. Conventional kinesin's unusual processivity may be required for efficient transport of protein complexes that cannot carry multiple motors.  相似文献   

18.
Strict coordination of the two motor domains of kinesin is required for driving the processive movement of organelles along microtubules. Glutamate 164 of the kinesin heavy chain was shown to be critical for kinesin function through in vivo genetics in Drosophila melanogaster. The mutant motor E164K exhibited reduced steady-state ATPase activity and higher affinity for both ATP and microtubules. Moreover, an alanine substitution at this position (E164A) caused similar defects. It became stalled on the microtubule and was unable to bind and hydrolyze ATP at the second motor domain. Glu(164), which has been conserved through evolution, is located at the motor-microtubule interface close to key residues on helix alpha12 of beta-tubulin. We explored further the contributions of Glu(164) to motor function using several site-directed mutant proteins: E164K, E164N, E164D, E164Q, and D165A. The results indicate that the microtubule-E164K complex can only bind and hydrolyze one ATP. ATP with increased salt was able to dissociate a population of E164K motors from the microtubule but could not dissociate E164A. We tested the basis of the stabilized microtubule interaction with E164K, E164N, and E164A. The results provide new insights about the motor-microtubule interface and the pathway of communication for processive motility.  相似文献   

19.
Conventional kinesin and Eg5 are essential nanoscale motor proteins. Single-molecule and presteady-state kinetic experiments indicate that both motors use similar strategies to generate movement along microtubules, despite having distinctly different in vivo functions. Single molecules of kinesin, a long-distance cargo transporter, are highly processive, binding the microtubule and taking 100 or more sequential steps at velocities of up to 700 nm/s before dissociating, whereas Eg5, a motor active in mitotic spindle assembly, is also processive, but takes fewer steps at a slower rate. By dissecting the structural, biochemical and mechanical features of these proteins, we hope to learn how kinesin and Eg5 are optimized for their specific biological tasks, while gaining insight into how biochemical energy is converted into mechanical work.  相似文献   

20.
N-Ethylmaleimide, an agent which alkylates free sulfhydryls in proteins, has been used to probe the role of sulfhydryls in kinesin, a motor protein for the movement of membrane-bounded organelles in fast axonal transport. When squid axoplasm is perfused with concentrations of NEM higher than 0.5 mM, organelle movements in both the anterograde and retrograde directions cease, and the vesicles remain attached to microtubules. Incubation of highly purified bovine brain kinesin with similar concentrations of NEM modifies the enzyme's microtubule-stimulated ATPase activity and promotes the binding of kinesin to microtubules in the presence of ATP. These results suggest that alkylation of sulfhydryls on kinesin alters the conformation of the protein in a manner that profoundly affects its interactions with ATP and microtubules. The NEM-sensitive sulfhydryls, therefore, may provide a valuable tool for the dissection of functional domains of the kinesin molecule and for understanding the mechanochemical cycle of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号