首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Identification of AP-1 target genes in apoptosis and differentiation has proved elusive. Secretogranin II (SgII) is a protein widely distributed in nervous and endocrine tissues, and abundant in neuroendocrine granules. We addressed whether SgII is regulated by AP-1, and if SgII is involved in neuronal differentiation or the cellular response to nitrosative stress. Nitric oxide (NO) upregulated sgII mRNA dependent on a cyclic AMP response element (CRE) in the sgII promoter, and NO stimulated SgII protein secretion in neuroblastoma cells. Upregulation of sgII mRNA, sgII CRE-driven gene expression and SgII protein synthesis/export were attenuated in cells transformed with dominant-negative c-Jun (TAM67), which became sensitized to NO-induced apoptosis and failed to undergo nerve growth factor-dependent neuronal differentiation. Stable transformation of TAM67 cells with sgII restored neuronal differentiation and resistance to NO. RNAi knockdown of sgII in cells expressing functional c-Jun abolished neuronal differentiation and rendered the cells sensitive to NO-induced apoptosis. Therefore, SgII represents a key AP-1-regulated protein that counteracts NO toxicity and mediates neuronal differentiation of neuroblastoma cells.  相似文献   

2.
3.
4.
5.
MAPK-dependent activation of AP-1 protein c-Jun is involved in PC12 cell differentiation and apoptosis. However, the role of other AP-1 proteins and their connection to MAPKs during growth, differentiation and apoptosis has remained elusive. Here we studied the activation of AP-1 proteins in response to ERK, JNK, and p38 signaling upon NGF, EGF and anisomycin exposures. All treatments caused different kinetics and strength of MAPK and AP-1 activities. NGF induced persistent ERK and AP-1 activities, whereas upon EGF and anisomycin exposures, their activities were only weakly and transiently induced. The sustained AP-1 activity was associated with concomitant c-Fos and c-Jun expression and phoshorylation, which were JNK and ERK dependent. While inhibition of the ERK, JNK, and p38 activities partially prevented AP-1 activity and suppressed differentiation, none of them was required for anisomycin-induced apoptosis. The importance of c-Fos and c-Jun as mediators of differentiation was demonstrated by the findings that the corresponding siRNAs suppressed NGF-induced neurite outgrowth. However, the capacity of c-Fos to promote differentiation required cooperation with Jun proteins. In contrast, Fra-2 expression was not required for the differentiation response. Together, the results show that sustained c-Jun and c-Fos activities mediate MAPK signaling and are essential for differentiation of PC12 cells.  相似文献   

6.
7.
8.
9.
The c-Jun/Sp1 interaction is essential for growth factor- and phorbol 12-myristate 13-acetate (PMA)-induced genes expression, including human 12(S)-lipoxygenase, keratin 16, cytosolic phospholipase A2, p21(WAF1/CIP1), and neuronal nicotinic acetylcholine receptor beta4. Here, we examined the mechanism underlying the PMA-induced regulation on the interaction between c-Jun and Sp1. We found that treatment of cells with PMA induced a dephosphorylation at the C terminus of c-Jun at Ser-243 and a concomitant inhibition of PP2B by using PP2B small interfering RNA, resulting in reduction of PMA-induced gene expression as well as the c-Jun/Sp1 interaction. The c-Jun mutant TAM-67-3A, which contains three substitute alanines at Thr-231, Ser-243, and Ser-249 compared with TAM-67, binds more efficaciously with Sp1 and is about twice as efficacious as TAM-67 in inhibiting the PMA-induced activation of the 12(S)-lipoxygenase promoter. Importantly, PP2B not only dephosphorylates the c-Jun at Ser-243 but also interacts with c-Jun in PMA-treated cells. PMA stimulates the association of the PP2B/c-Jun/Sp1 complex with the promoter. These findings indicate the dephosphorylation of c-Jun C terminus is required for the c-Jun/Sp1 interaction and reveal that PP2B plays an important role in regulating c-Jun/Sp1 interaction in PMA-induced gene expression.  相似文献   

10.
11.
12.
13.
The activation of AP-1 is a hallmark of cell transformation by tyrosine kinases. In this study, we characterize the role of AP-1 proteins in the transformation of chicken embryo fibroblasts (CEF) by v-Src. In normal CEF, the expression of a dominant negative mutant of c-Jun (TAM67) induced senescence. In contrast, three distinct phenotypes were observed when TAM67 was expressed in v-Src-transformed CEF. While senescent cells were also present, the inhibition of AP-1 caused apoptosis in a fraction of the v-Src-transformed cells. In addition, cells containing lipid-rich vesicles accumulated, suggesting that a subpopulation of the v-Src-transformed cells underwent differentiation in response to the inhibition of AP-1. JunD and Fra-2 were the main components of this factor, while c-Jun accounted for a minor fraction of AP-1 in v-Src-transformed CEF. The downregulation of c-Jun expression by short hairpin RNA (shRNA) induced senescence in normal and v-Src-transformed cells. In contrast, a high incidence of apoptosis was caused by the downregulation of JunD, suggesting that it is required for the survival of v-Src-transformed CEF. Levels of the p53 tumor suppressor were elevated under conditions of JunD inhibition. Repression of p53 by shRNA enhanced the survival and anchorage-independent proliferation of v-Src-transformed CEF with JunD/AP-1 inhibition. The inhibition of Fra-2 had no visible phenotype in normal CEF but caused the appearance of lipid-rich vesicles in v-Src-transformed CEF. Therefore, AP-1 facilitated transformation by acting as a survival factor, by inhibiting premature entry into senescence, and by blocking the differentiation of v-Src-transformed CEF.  相似文献   

14.
We investigated the effects of the cellular redox state on nerve growth factor (NGF)-induced neuronal differentiation and its signaling pathways. Treatment of PC12 cells with buthionine sulfoximine (BSO) reduced the levels of GSH, a major cellular reductant, and enhanced NGF-induced neuronal differentiation, activation of AP-1 and the NGF receptor tyrosine kinase, TrkA. Conversely, incubation of the cells with a reductant, N-acetyl-L-cysteine (NAC), inhibited NGF-induced neuronal differentiation and AP-1 activation. Consistent with the suppression, NAC inhibited NGF-induced activation of TrkA, formation of receptor complexes comprising TrkA, Shc, Grb2, and Sos, and activation of phospholipase Cgamma and phosphatidylinositol 3-kinase. Biochemical analysis suggested that the cellular redox state regulates TrkA activity through modulation of protein tyrosine phosphatases (PTPs). Thus, cellular redox state regulates signaling pathway of NGF through PTPs, and then modulates neuronal differentiation.  相似文献   

15.
16.
17.
18.
19.
Transforming growth factor-beta (TGF-beta)-activated kinase 1 (TAK1), a serine/threonine kinase, is reported to function in the signaling pathways of TGF-beta, interleukin 1, and ceramide. However, the physiological role of TAK1 in vivo is largely unknown. To assess the function of TAK1 in vivo, dominant-negative TAK1 (dnTAK1) was expressed in the rat liver by adenoviral gene transfer. dnTAK1 expression abrogated c-Jun NH(2)-terminal kinase and c-Jun but not nuclear factor (NF)-kappaB or SMAD activation after partial hepatectomy (PH). Expression of dnTAK1 or TAM-67, a dominant-negative c-Jun, induced G(0) exit in quiescent liver and accelerated cell cycle progression after PH. Finally, dnTAK1 and TAM-67 induced c-myc expression in the liver before and after PH, suggesting that G(0) exit induced by dnTAK1 and TAM-67 is mediated by c-myc induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号