首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly repetitive DNA sequences constitute a significant portion of most eukaryotic genomes, raising questions about their evolutionary origins and amplification dynamics. In this study, a novel chicken repetitive DNA family, the HinfI repeat, was characterized. The basic repeating unit of this family displays a uniform length of 770 bp, which was defined by the recognition site of HinfI. The HinfI repeat was specifically localized in the pericentric region of chromosome 4 by fluorescence in situ hybridization and constitutes 0.51% of the chicken genome. Interestingly, a chicken repeat 1 (CR1) element has been identified within this basic repeating unit. Like other CR1 elements, this CR1 element also displays typical retrotransposition characteristics, including a highly conserved 3' region and a badly truncated 5' end. This direct evidence from sequence analysis, together with our Southern blot results, suggests that the HinfI repeat may originate from a unique region containing a retrotransposed CR1 element.  相似文献   

2.
Staginnus  C.  Winter  P.  Desel  C.  Schmidt  T.  Kahl  G. 《Plant molecular biology》1999,39(5):1037-1050
Three major repetitive DNA sequences were isolated from a genomic library of chickpea (Cicer arietinum L.) and characterized with respect to their genomic organization and chromosomal localization. All repetitive elements are genus-specific and mostly located in the AT-rich pericentric heterochromatin. Two families are organized as satellite DNAs with repeat lengths of 162–168 bp (CaSat1) and 100 bp (CaSat2). CaSat1 is mainly located adjacent to the 18S rDNA clusters on chromosomes A and B, whereas CaSat2 is a major component of the pericentric heterochromatin on all chromosomes. The high abundance of these sequences in closely related species of the genus Cicer as well as their variation in structure and copy number among the annual species provide useful tools for taxonomic studies. The retrotransposon-like sequences of the third family (CaRep) display a more complex organization and are represented by two independent sets of clones (CaRep1 and CaRep2) with homology to different regions of Ty3-gypsy-like retrotransposons. They are distributed over the pericentric heterochromatin block on all chromosomes with extensions into euchromatic regions. Conserved structures within different crossability groups of related Cicer species suggest independent amplification or transposition events during the evolution of the annual species of the genus.  相似文献   

3.
We cloned and characterized a new highly repetitive, species-specific DNA sequence from turkey (Meleagris gallopavo). This repeat family, which accounts for approximately 5% of the turkey genome, consists of a 41 bp repeated element that is present in tandem arrays longer than 23 kb. In situ hybridization to turkey metaphase chromosomes (2n=80) demonstrated that this sequence was located primarily on certain microchromosomes: approximately one-third of the 66 microchromosomes showed a positive signal. With respect to the macrochromosomes, hybridization was seen only in a pericentric position on nos. 2 and 3. The turkey microchromosome (TM) sequence shares motifs (alternating A3–5 and T3–5 clusters separated by 6–8 bp) that have been found previously in other avian tandemly repeated elements, e.g. a chicken microchromosome sequence, and W (female) chromosome-specific sequences of chicken and turkey. However, the TM sequence does not cross-hybridize under moderately stringent conditions with these other sequence. The spread and amplification of related repetitive sequence elements on microchromosomes and W chromosomes is discussed.by E.R. Schmidt  相似文献   

4.
We isolated and characterized the first chromosome-specific satellite DNA (HC2sat) of Chinese hamster. This novel satellite was localized to the pericentric region of hamster chromosome 2. The 2.8 kb long repeat unit of HC2sat was identified and two such units were sequenced. Extended short range periodicity could not be revealed in repeat units. These elements are amongst the largest satellite repeat units reported from mammals to date. HC2sat is a major constituent of the pericentric region of CHO chromosome 2 representing a 7-14 Mb long DNA segment. Studies of long range organization of HC2sat indicated that the formation of the satellite array might occur in different phases and involved different amplification mechanisms.  相似文献   

5.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

6.
To understand the architecture of the human genome, we need a complete definition of all the repeat sequence families, as these make up the majority of human DNA. We have isolated a small DNA fragment from human chromosome 21 and have used sequence analysis of this fragment to uncover a new low copy repeat element of approximately 300 bp that we term the Mermaid repeat. This repeat is related to, but is different from, the MER 12 repeat and is interspersed in the genome. Mermaid family members that we have studied are between 81%–87% identical to our preliminary consensus sequence. Therefore, we have added a new member to the large collection of human repetitive elements. In addition, we have mapped a Mermaid repeat to a telomeric position on the long arm of human chromosome 21, at 21q22.3  相似文献   

7.
C A Fields  D L Grady  R K Moyzis 《Genomics》1992,13(2):431-436
Fifteen examples of the transposon-like human element (THE) LTR and thirteen examples of the MstII interspersed repeat are aligned to generate new consensus sequences for these human repetitive elements. The consensus sequences of these elements are very similar, indicating that they compose subfamilies of a single human interspersed repetitive sequence family. Members of this highly polymorphic repeat family have been mapped to at least 11 chromosomes. Seven examples of the THE internal sequence are also aligned to generate a new consensus sequence for this element. Estimates of the abundance of this repetitive sequence family, derived from both hybridization analysis and frequency of occurrence in GenBank, indicate that THE-LTR/MstII sequences are present every 100-3000 kb in human DNA. The widespread occurrence of members of this family makes them useful landmarks, like Alu, L1, and (GT)n repeats, for physical and genetic mapping of human DNA.  相似文献   

8.
Repetitive DNA was cloned from HindIII-digested genomic DNA of Larix leptolepis. The repetitive DNA was about 170 bp long, had an AT content of 67%, and was organized tandemly in the genome. Using fluorescence in situ hybridization and subsequent DAPI banding, the repetitive DNA was localized in DAPI bands at the proximal region of one arm of chromosomes in L. leptolepis and Larix chinensis. Southern blot hybridization to genomic DNA of seven species and five varieties probed with cloned repetitive DNA showed that the repetitive DNA family was present in a tandem organization in genomes of all Larix taxa examined. In addition to the 170-bp sequence, a 220-bp sequence belonging to the same DNA family was also present in 10 taxa. The 220-bp repeat unit was a partial duplication of the 170-bp repeat unit. The 220-bp repeat unit was more abundant in L. chinensis and Larix potaninii var. macrocarpa than in other taxa. The repetitive DNA composed 2.0-3.4% of the genome in most taxa and 0.3 and 0.5% of the genome in L. chinensis and L. potaninii var. macrocarpa, respectively. The unique distribution of the 220-bp repeat unit in Larix indicates the close relationship of these two species. In the family Pinaceae, the LPD (Larix proximal DAPI band specific repeat sequence family) family sequence is widely distributed, but their amount is very small except in the genus Larix. The abundant LPD family in Larix will occur after its speciation.  相似文献   

9.
10.
A novel highly abundant satellite DNA comprising 20% of the genome has been characterized in Palorus subdepressus (Insecta, Coleoptera). The 72-bp-long monomer sequence is composed of two copies of T2A5T octanucleotide alternating with 22-nucleotide-long elements of an inverted repeat. Phylogenetic analysis revealed clustering of monomer sequence variants into two clades. Two types of variants are prevalently organized in an alternating pattern, thus showing a tendency to generate a new complex repeating unit 144 bp in length. Fluorescent in situ hybridization revealed even distribution of the satellite in the region of pericentric heterochromatin of all 20 chromosomes. P. subdepressus satellite sequence is clearly species specific, lacking similarity even with the satellite from congeneric species P. ratzeburgii. However, on the basis of similarity in predicted tertiary structure induced by intrinsic DNA curvature and in repeat length, P. subdepressus satellite can be classified into the same group with satellites from related tenebrionid species P. ratzeburgii, Tenebrio molitor, and T. obscurus. It can be reasonably inferred that repetitive sequences of different origin evolve under constraints to adopt and conserve particular features. Obtained results suggest that the higher-order structure and repeat length, but not the nucleotide sequence itself, are maintained through evolution of these species. Received: 23 April 1997 / Accepted: 11 July 1997  相似文献   

11.
P P Ueng  A Hang  H Tsang  J M Vega  L Wang  C S Burton  F T He  B Liu 《Génome》2000,43(3):556-563
A repetitive sequence designated WE35 was isolated from wheat genomic DNA. This sequence consists of a 320-bp repeat unit and represents approximately 0.002% of the total wheat DNA. It is unidirectionally distributed either continuously or discretely in the genome. Ladder-like banding patterns were observed in Southern blots when the wheat genomic DNA was restricted with endonuclease enzymes EcoRI, HincII, NciI, and NdeI, which is characteristic for tandemly organized sequences. Two DNA fragments in p451 were frequently associated with the WE35 repetitive unit in a majority of lambda wheat genomic clones. A 475-bp fragment homologous to the 5'-end long terminal repeat (LTR) of cereal retroelements was also found in some lambda wheat genomic clones containing the repetitive unit. Physical mapping by fluorescence in situ hybridization (FISH) indicated that one pair of wheat chromosomes could be specifically detected with the WE35 positive probe p551. WE35 can be considered a chromosome-specific repetitive sequence. This repetitive unit could be used as a molecular marker for genetic, phylogenetic, and evolutionary studies in the tribe Triticeae.  相似文献   

12.
The sequence similarity among chromosome-specific alpha-satellite DNA was quantitatively evaluated by a novel procedure: nucleotide frequency calculation. Tandem-arrayed repetitive DNA segments were aligned with unit length repeat, and the nucleotide frequency at each position was used to estimate the phylogenetic distance between repetitive DNA segments. The calculations for human and chimpanzee X chromosome alpha-satellites showed that the results were consistent with the known relationships of primates, indicating that the nucleotide frequency calculation worked effectively to estimate the distances between satellite arrays. Human chromosome-specific alpha-satellites had been grouped into three suprachromosomal families (I, II, and III), and in the current work the nucleotide frequency analysis has defined the quantitative distances between the chromosome-specific alpha-satellite DNA.  相似文献   

13.
Genomes of opisthorchid species are characterized by small size, suggesting a reduced amount of repetitive DNA in their genomes. Distribution of repetitive DNA sequences in the chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus 2n = 14 (Rivolta, 1884), Opisthorchis viverrini 2n = 12 (Poirier, 1886), Metorchis xanthosomus 2n = 14 (Creplin, 1846), Metorchis bilis 2n = 14 (Braun, 1890), Clonorchis sinensis 2n = 14 (Cobbold, 1875)) was studied with C- and AgNOR-banding, generation of microdissected DNA probes from individual chromosomes and fluorescent in situ hybridization on mitotic and meiotic chromosomes. Small-sized C-bands were discovered in pericentric regions of chromosomes. Ag-NOR staining of opisthorchid chromosomes and FISH with ribosomal DNA probe showed that karyotypes of all studied species were characterized by the only nucleolus organizer region in one of small chromosomes. The generation of DNA probes from chromosomes 1 and 2 of O. felineus and M. xanthosomus was performed with chromosome microdissection followed by DOP-PCR. FISH of obtained microdissected DNA probes on chromosomes of these species revealed chromosome specific DNA repeats in pericentric C-bands. It was also shown that microdissected DNA probes generated from chromosomes could be used as the Whole Chromosome Painting Probes without suppression of repetitive DNA hybridization. Chromosome painting using microdissected chromosome specific DNA probes showed the overall repeat distribution in opisthorchid chromosomes.  相似文献   

14.
Chromocenter DNA fragments of polytene chromosomes of Drosophila orena ovarian nurse cells were cloned from a region-specific library (Dore 1) in a plasmid vector to yield 133 clones. A total of 76 clones were selected and sequenced. The total length of the sequenced fragments was 23940 bp. Analysis with several software packages revealed various repetitive sequences among the fragments of the Dore 1 library, including mobile genetic elements (25 fragments homologous to various LTR retrotransposons, five fragments homologous to LINEs, three fragments homologous to Helitrons, one fragment homologous to Polinton, and one fragment homologous to the mini-me non-LTR retrotransposon), four minisatellites, a satellite (SAR_DM), the (TATATG)n simple sequence repeat, and a low-complexity T-rich repeat. Sequences homologous to protein-coding genes were also found in the Dore 1 library. Various repetitive DNA sequences and gene homologs were identified as conserved sequences of pericentric heterochromatin of polytene chromosomes of ovarian nurse cells in nine species of the melanogaster species subgroup.  相似文献   

15.
Chromocenter DNA fragments of polytene chromosomes of Drosophila orena ovarian nurse cells were cloned from a region-specific library (Dore1) in a plasmid vector to yield 133 clones. A total of 76 clones were selected and sequenced. The total length of the sequenced fragments was 23940 bp. Analysis with several software packages revealed various repetitive sequences among the fragments of the Dore1 library, including mobile genetic elements (25 fragments homologous to various LTR retrotransposons, five fragments homologous to LINEs, three fragments homologous to Helitrons, one fragment homologous to Polinton, and one fragment homologous to the mini-me non-LTR retrotransposon), four minisatellites, a satellite (SAR_DM), the (TATATG)n simple sequence repeat, and a low-complexity T-rich repeat. Sequences homologous to protein-coding genes were also found in the Dore1 library. Various repetitive DNA sequences and gene homologs were identified as conserved sequences of pericentric heterochromatin of polytene chromosomes of ovarian nurse cells in nine species of the melanogaster species subgroup.  相似文献   

16.
Flow karyotyping and sorting of individual chromosome types is difficult when chromosomes of a complement do not differ sufficiently in DNA content. A strategy for sorting chromosomes of similar size has been developed. For this purpose oligonucleotide primed in situ (PRINS)-labelling was adapted to field bean chromosomes in suspension. With a primer designed according to a tandemly repetitive sequence ( Fokl element) PRINS-labelling resulted in fluorescence signals specific in position and intensity for each chromosome. A bivariate sorting mode combining fluorescence pulse areas obtained from propidium iodide staining (representing DNA content) and fluorescein isothiocyanate signals (representing chromosome-specific label) allowed chromosomes deviating in length by less than 1% of the haploid metaphase complement to be sorted. The average purity of sorted fractions was 95%. This technique should be applicable also to chromosomes of other species for obtaining chromosome-specific painting probes, for construction of chromosome-specific libraries (both without additional DNA amplification), and for gene mapping.  相似文献   

17.
Satellite repeat elements are an abundant component of eukaryotic genomes, but not enough is known about their evolutionary dynamics and their involvement in karyotype and species differentiation. We report the nucleotide sequence, chromosomal localization, and evolutionary dynamics of a repetitive DNA element of the tiger beetle species pair Cicindela maroccana and Cicindela campestris. The element was detected after restriction digest of C. maroccana total genomic DNA with EcoRI as a single band and its multimers on agarose gels. Cloning and sequencing of several isolates revealed a consensus sequence of 383 bp with no internal repeat structure and no detectable similarity to any entry in GenBank. Hybridization of the satellite unit to C. maroccana mitotic and meiotic chromosomes revealed the presence of this repetitive DNA in the centromeres of all chromosomes except the Y chromosome, which exhibited only a very weak signal in its short arm. PCR-based tests for this satellite in related species revealed its presence in the sister species C. campestris, but not in other closely related species. Phylogenetic analysis of PCR products revealed well-supported clades that generally separate copies from each species. Because both species exhibit the multiple X chromosome karyotypic system common to Cicindela, but differ in their X chromosome numbers (four in C. maroccana vs. three in C. campestris), structural differences could also be investigated with regard to the position of satellites in a newly arisen X chromosome. We find the satellite in a centromeric position in all X chromosomes of C. maroccana, suggesting that the origin of the additional X chromosome involves multiple karyotypic rearrangements.  相似文献   

18.
A repeating element of DNA has been isolated and sequenced from the genome of Bordetella pertussis. Restriction map analysis of this element shows single internal ClaI, SphI, BstEII and SalI sites. Over 40 DNA fragments are seen in ClaI digests of B. pertussis genomic DNA to which the repetitive DNA sequence hybridizes. Sequence analysis of the repeat reveals that it has properties consistent with bacterial insertion sequence (IS) elements. These properties include its length of 1053 bp, multiple copy number and presence of 28 bp of near-perfect inverted repeats at its termini. Unlike most IS elements, the presence of this element in the B. pertussis genome is not associated with a short duplication in the target DNA sequence. This repeating element is not found in the genomes of B. parapertussis or B. bronchiseptica. Analysis of a DNA fragment adjacent to one copy of the repetitive DNA sequence has identified a different repeating element which is found in nine copies in B. parapertussis and four copies in B. pertussis, suggesting that there may be other repeating DNA elements in the different Bordetella species. Computer analysis of the B. pertussis repetitive DNA element has revealed no significant nucleotide homology between it and any other bacterial transposable elements, suggesting that this repetitive sequence is specific for B. pertussis.  相似文献   

19.
Centromeres and telomeres of higher eukaryotes generally contain repetitive sequences, which often form pericentric or subtelomeric heterochromatin blocks. C-banding analysis of chromosomes of Azara''s owl monkey, a primate species, showed that the short arms of acrocentric chromosomes consist mostly or solely of constitutive heterochromatin. The purpose of the present study was to determine which category, pericentric, or subtelomeric is most appropriate for this heterochromatin, and to infer its formation processes. We cloned and sequenced its DNA component, finding it to be a tandem repeat sequence comprising 187-bp repeat units, which we named OwlRep. Subsequent hybridization analyses revealed that OwlRep resides in the pericentric regions of a small number of metacentric chromosomes, in addition to the short arms of acrocentric chromosomes. Further, in the pericentric regions of the acrocentric chromosomes, OwlRep was observed on the short-arm side only. This distribution pattern of OwlRep among chromosomes can be simply and sufficiently explained by assuming (i) OwlRep was transferred from chromosome to chromosome by the interaction of pericentric heterochromatin, and (ii) it was amplified there as subtelomeric heterochromatin. OwlRep carries several direct and inverted repeats within its repeat units. This complex structure may lead to a higher frequency of chromosome scission and may thus be a factor in the unique distribution pattern among chromosomes. Neither OwlRep nor similar sequences were found in the genomes of the other New World monkey species we examined, suggesting that OwlRep underwent rapid amplification after the divergence of the owl monkey lineage from lineages of the other species.  相似文献   

20.
Chromosome-specific subfamilies within human alphoid repetitive DNA   总被引:21,自引:0,他引:21  
Nucleotide sequence data of about 20 X 10(3) base-pairs of the human tandemly repeated alphoid DNA are presented. The DNA sequences were determined from 45 clones containing EcoRI fragments of alphoid DNA isolated from total genomic DNA. Thirty of the clones contained a complete 340 base-pair dimer unit of the repeat. The remaining clones contained alphoid DNA with fragment lengths of 311, 296, 232, 170 and 108 base-pairs. The sequences obtained were compared with an average alphoid DNA sequence determined by Wu & Manuelidis (1980). The divergences ranged from 0.6 to 24.6% nucleotide changes for the first monomer and from 0 to 17.8% for the second monomer of the repeat. On the basis of identical nucleotide changes at corresponding positions, the individual repeat units could be shown to belong to one of several distinct subfamilies. The number of nucleotide changes defining a subfamily generally constitutes the majority of nucleotide changes found in a member of that subfamily. From an evaluation of the proportion of the total amount of alphoid DNA, which is represented by the clones studied, it is estimated that the number of subfamilies of this repeat may be equal to or exceed the number of chromosomes. The expected presence of only one or a few distinct subfamilies on individual chromosomes is supported by the study, also presented, of the nucleotide sequence of 17 cloned fragments of alphoid repetitive DNA from chromosome 7. These chromosome-specific repeats all contain the characteristic pattern of 36 common nucleotide changes that defines one of the subfamilies described. A unique restriction endonuclease (NlaIII) cleavage site present in this subfamily may be useful as a genetic marker of this chromosome. A family member of the interspersed Alu repetitive DNA was also isolated and sequenced. This Alu repeat has been inserted into the human alphoid repetitive DNA, in the same way as the insertion of an Alu repeat into the African green monkey alphoid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号