首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both NADPH oxidase-derived reactive oxygen species (ROS) and asymmetric dimethylarginine (ADMA) are increased in hypertension. Apocynin, an NADPH oxidase inhibitor, could inhibit ROS, thus we tested whether apocynin can block NADPH oxidase and prevent increases of ADMA and blood pressure (BP) in spontaneously hypertensive rats (SHRs). SHRs and Wistar Kyoto (WKY) rats, aged 4 weeks, were assigned to four groups: untreated SHRs and WKY rats, SHRs and WKY rats that received 2.5 mM apocynin for 8 weeks. BP was significantly higher in SHRs compared to WKY rats, which was attenuated by apocynin. Apocynin prevented p47phox translocation in SHR kidneys, but not the increase of superoxide and H(2)O(2). Additionally, apocynin did not protect SHRs against increased ADMA. Apocynin blocks NADPH oxidase to attenuate hypertension, but has little effect on the ADMA/nitric oxide (NO) pathway in young SHRs. The reduction of ROS and the preservation of NO simultaneously might be a better approach to restoring ROS-NO balance to prevent hypertension.  相似文献   

2.
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes in different tissues. Angiotensin-II (Ang-II) is involved in the fibrotic response. Several muscular dystrophies are characterized by extensive fibrosis. However, the exact role of Ang-II in skeletal muscle fibrosis is unknown. Here we show that myoblasts responded to Ang-II by increasing protein levels of connective tissue growth factor (CTGF/CCN2), collagen-III and fibronectin. These Ang-II-induced pro-fibrotic effects were mediated by AT-1 receptors. Remarkably, Ang-II induced reactive oxygen species (ROS) via a NAD(P)H oxidase-dependent mechanism, as shown by inhibition of ROS production via the NAD(P)H oxidase inhibitors diphenylene iodonium (DPI) and apocynin. This increase in ROS is critical for Ang-II-induced fibrotic effects, as indicated by the decrease in Ang-II-induced CTGF and fibronectin levels by DPI and apocynin. We also show that Ang-II-induced ROS production and fibrosis require PKC activity as indicated by the generic PKC inhibitor chelerythrine.These results strongly suggest that the fibrotic response induced by Ang-II is mediated by AT-1 receptor and requires NAD(P)H-induced ROS in skeletal muscle cells.  相似文献   

3.
We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O(2)(-)) scavenger (Tempol; 100 μM) or an NAD(P)H oxidase inhibitor (apocynin; 100 μM). In the absence of inhibitors, flow- and ACh-induced dilations were attenuated in SFA from old rats compared with young rats. Tempol and apocynin improved flow- and ACh-induced dilation in SFA from old rats. In SFA from young rats, Tempol and apocynin had no effect on flow-induced dilation, and apocynin attenuated ACh-induced dilation. To determine the role of hydrogen peroxide (H(2)O(2)), dilator responses were assessed in the absence and presence of catalase (100 U/ml) or PEG-catalase (200 U/ml). Neither H(2)O(2) scavenger altered flow-induced dilation, whereas both H(2)O(2) scavengers blunted ACh-induced dilation in SFA from young rats. In old SFA, catalase improved flow-induced dilation whereas PEG-catalase improved ACh-induced dilation. Compared with young SFA, in response to exogenous H(2)O(2) and NADPH, old rats exhibited blunted dilation and constriction, respectively. Immunoblot analysis revealed that the NAD(P)H oxidase subunit gp91phox protein content was greater in old SFA compared with young. These results suggest that NAD(P)H oxidase-derived reactive oxygen species contribute to impaired endothelium-dependent dilation in old SFA.  相似文献   

4.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases owing to increased production or decreased scavenging, which have been considered common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase.  相似文献   

5.
Chronic ethanol consumption is a risk factor for cardiovascular diseases. We studied whether NAD(P)H oxidase-derived reactive oxygen species (ROS) play a role in ethanol-induced hypertension, vascular dysfunction, and protein expression in resistance arteries. Male Wistar rats were treated with ethanol (20 %?v/v) for 6 weeks. Ethanol treatment increased blood pressure and decreased acetylcholine-induced relaxation in the rat mesenteric arterial bed (MAB). These responses were attenuated by apocynin (30 mg/kg/day; p.o. gavage). Ethanol consumption increased superoxide anion (O2 ?) generation and decreased nitrate/nitrite (NO x ) concentration in the rat MAB and apocynin prevented these responses. Conversely, ethanol did not affect the concentration of hydrogen peroxide (H2O2) and reduced glutathione (GSH) or the activity of superoxide dismutase (SOD) and catalase (CAT) in the rat MAB. Ethanol increased interleukin (IL)-10 levels in the rat MAB but did not affect the levels of tumor necrosis factor (TNF)-α, IL-6, or IL-1β. Ethanol increased the expression of Nox2 and the phosphorylation of SAPK/JNK, but reduced eNOS expression in the rat MAB. Apocynin prevented these responses. However, ethanol treatment did not affect the expression of Nox1, Nox4, p38MAPK, ERK1/2, or SAPK/JNK in the rat MAB. Ethanol increased plasma levels of TBARS, TNF-α, IL-6, IL-1β, and IL-10, whereas it decreased NO x levels. The major finding of our study is that NAD(P)H oxidase-derived ROS play a role on ethanol-induced hypertension and endothelial dysfunction in resistance arteries. Moreover, ethanol consumption affects the expression and phosphorylation of proteins that regulate vascular function and NAD(P)H oxidase-derived ROS play a role in such responses.  相似文献   

6.
An enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation in renovascular hypertension. The present study was designed to determine the role of superoxide anions in the paraventricular nucleus (PVN) in mediating the enhanced CSAR and sympathetic activity in renovascular hypertension in the two-kidney, one-clip (2K1C) model. Sinoaortic denervation and vagotomy were carried out, and renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded under anesthesia. The CSAR was evaluated by the response of RSNA to the epicardial application of capsaicin. Superoxide anion levels and NAD(P)H oxidase activity in the PVN increased in 2K1C rats and were much higher in 2K1C rats than in sham-operated (sham) rats after the epicardial application of capsaicin or PVN microinjection of ANG II. In both 2K1C and sham rats, PVN microinjection of the superoxide anion scavenger tempol or the NAD(P)H oxidase inhibitor apocynin abolished the CSAR, whereas the SOD inhibitor diethyldithiocarbamic acid (DETC) potentiated the CSAR. Tempol and apocynin decreased but DETC increased baseline RSNA and MAP. ANG II in the PVN caused larger responses of the CSAR, baseline RSNA, and baseline MAP in 2K1C rats than in sham rats. The effects of ANG II were abolished by pretreatment with tempol or apocynin in both 2K1C and sham rats and augmented by DETC in the PVN in 2K1C rats. These results indicate that superoxide anions in the PVN mediate the CSAR and the effects of ANG II in the PVN. Increased superoxide anions in the PVN contribute to the enhanced CSAR and sympathetic activity in renovascular hypertension.  相似文献   

7.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. We investigated the role of the NAD(P)H oxidase Nox4 in generation of reactive oxygen species (ROS), hypertrophy, and fibronectin expression in a rat model of type 1 diabetes induced by streptozotocin. Phosphorothioated antisense (AS) or sense oligonucleotides for Nox4 were administered for 2 weeks with an osmotic minipump 72 h after streptozotocin treatment. Nox4 protein expression was increased in diabetic kidney cortex compared with non-diabetic controls and was down-regulated in AS-treated animals. AS oligonucleotides inhibited NADPH-dependent ROS generation in renal cortical and glomerular homogenates. ROS generation by intact isolated glomeruli from diabetic animals was increased compared with glomeruli isolated from AS-treated animals. AS treatment reduced whole kidney and glomerular hypertrophy. Moreover, the increased expression of fibronectin protein was markedly reduced in renal cortex including glomeruli of AS-treated diabetic rats. Akt/protein kinase B and ERK1/2, two protein kinases critical for cell growth and hypertrophy, were activated in diabetes, and AS treatment almost abolished their activation. In cultured mesangial cells, high glucose increased NADPH oxidase activity and fibronectin expression, effects that were prevented in cells transfected with AS oligonucleotides. These data establish a role for Nox4 as the major source of ROS in the kidneys during early stages of diabetes and establish that Nox4-derived ROS mediate renal hypertrophy and increased fibronectin expression.  相似文献   

8.
Cotter MA  Cameron NE 《Life sciences》2003,73(14):1813-1824
Upregulation of vascular NAD(P)H oxidase has been considered an important source for elevated levels of reactive oxygen species that contribute to several cardiovascular disease states, including the vascular complications of diabetes mellitus. Previous studies have shown that treatment with antioxidants corrects impaired nerve function and blood flow in diabetic rats. The aim was to assess the degree of involvement of NAD(P)H oxidase in experimental diabetic neuropathy. To this end, after 6 weeks of untreated streptozotocin-diabetes, rats were treated for 2 weeks with the NAD(P)H oxidase, apocynin. Two high doses (15 and 100 mg/kg) were used to ensure that maximal effects were registered. Diabetes caused a 20% reduction in sciatic nerve motor conduction velocity, and a 14% deficit for sensory saphenous nerve. Apocynin treatment corrected these defects by 32% and 48%, respectively: there were no significant differences between the effects of the 2 doses. Sciatic nerve nutritive endoneurial perfusion was measured by hydrogen clearance microelectrode polarography. Blood flow and vascular conductance were 47% and 40% reduced by diabetes, respectively. Both doses of apocynin had similar effects, correcting the blood flow deficit by 31% and conductance by 47%. Thus, the data show that NAD(P)H oxidase contributes to the neurovascular deficits in diabetic rats. While only accounting for part of the elevated reactive oxygen species production in diabetes, this mechanism could provide a novel therapeutic candidate for further investigation in diabetic neuropathy and vasculopathy.  相似文献   

9.
Although the cardiovascular morbidity and mortality induced by cigarette smoking exceed those attributable to lung cancer, the molecular basis of smoking-induced vascular injury remains unclear. To test the link between cigarette smoke, oxidative stress, and vascular inflammation, rats were exposed to the smoke of five cigarettes per day (for 1 wk). Also, isolated arteries were exposed to cigarette smoke extract (CSE; 0 to 40 microg/ml, for 6 h) in organoid culture. We found that smoking impaired acetylcholine-induced relaxations of carotid arteries, which could be improved by the NAD(P)H oxidase inhibitor apocynin. Lucigenin chemiluminescence measurements showed that both smoking and in vitro CSE exposure significantly increased vascular O(2)(*-) production. Dihydroethidine staining showed that increased O(2)(*-) generation was present both in endothelial and smooth muscle cells. CSE also increased vascular H(2)O(2) production (dichlorofluorescein fluorescence). Vascular mRNA expression of the proinflammatory cytokines IL-1beta, IL-6, and TNF-alpha and that of inducible nitric oxide synthase was significantly increased by both smoking and CSE exposure, which could be prevented by inhibition of NAD(P)H oxidase (diphenyleneiodonium and apocynin) or scavenging of H(2)O(2). In cultured endothelial cells, CSE elicited NF-kappaB activation and increased monocyte adhesiveness, which were prevented by apocynin and catalase. Thus we propose that water-soluble components of cigarette smoke (which are likely to be present in the bloodstream in vivo in smokers) activate the vascular NAD(P)H oxidase. NAD(P)H oxidase-derived H(2)O(2) activates NF-kappaB, leading to proinflammatory alterations in vascular phenotype, which likely promotes development of atherosclerosis, especially if other risk factors are also present.  相似文献   

10.
Primary cytomegalovirus (CMV) infection promotes oxidative stress and reduces nitric oxide (NO) bioavailability in endothelial cells. These events are among the earliest vascular responses to cardiovascular risk factors. We assessed the roles of NAD(P)H oxidase and NO bioavailability in microvascular responses to persistent CMV infection alone or with hypercholesterolemia. Wild-type (WT) or gp91phox (NAD(P)H oxidase subunit) knockout mice received mock inoculum or 3 × 104 PFU murine CMV (mCMV) ip 5 weeks before placement on a normal or high-cholesterol diet (HC) for 4 weeks before assessment of arteriolar function and venular blood cell recruitment using intravital microscopy. Some WT groups received sepiapterin (a precursor of the nitric oxide synthase cofactor tetrahydrobiopterin) or apocynin (NAD(P)H oxidase inhibitor/antioxidant). Endothelium-dependent vasodilation was impaired in mCMV vs mock WT, regardless of diet. This was not affected by sepiapterin, and pharmacological inhibition of nitric oxide synthase reduced dilation similarly in mock and mCMV mice. Apocynin or deficiency of total, but not blood cell or vascular wall only (tested using bone marrow chimeras), gp91phox protected against arteriolar dysfunction. Blood cell recruitment was induced by mCMV–HC. Sepiapterin, but not NAD(P)H oxidase deficiency/apocynin, reduced leukocyte accumulation, whereas platelet adhesion was reduced by sepiapterin, apocynin, or total, platelet-specific, or vascular wall gp91phox deficiency. These data implicate activation of both hematopoietic and vessel wall NAD(P)H oxidase in mCMV-induced arteriolar dysfunction and platelet and vascular NAD(P)H oxidase in the thrombogenic phenotype induced by mCMV–HC. In contrast, findings with sepiapterin suggest that eNOS dysfunction, perhaps uncoupling, mediates venular, but not arteriolar, responses to mCMV–HC, thus indicating that NAD(P)H oxidase and eNOS differentially regulate microvascular responses to mCMV.  相似文献   

11.
The purpose of the present study was to evaluate whether endostatin overexpression could improve cardiac function, hemodynamics, and fibrosis in heart failure (HF) via inhibiting reactive oxygen species (ROS). The HF models were established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending (LAD) artery in Sprague–Dawley (SD) rats. Endostatin level in serum was increased in MI rats. The decrease in cardiac function and hemodynamics in MI rats were enhanced by endostatin overexpression. Endostatin overexpression inhibited the increase in collagen I, collagen III, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), matrix metalloproteinase (MMP)-2 and MMP9 in the hearts of MI rats. MI-induced cardiac hypertrophy was reduced by endostatin overexpression. The increased levels of malondialdehyde (MDA), superoxide anions, the promoted NAD(P)H oxidase (Nox) activity, and the reduced superoxide dismutase (SOD) activity in MI rats were reversed by endostatin overexpression. Nox4 overexpression inhibited the cardiac protective effects of endostatin. These results demonstrated that endostatin improved cardiac dysfunction and hemodynamics, and attenuated cardiac fibrosis and hypertrophy via inhibiting oxidative stress in MI-induced HF rats.  相似文献   

12.
NAD(P)H oxidases (NOX) and reactive oxygen species (ROS) are involved in vasoconstriction and vascular remodeling during hypertension produced by chronic angiotensin II (ANG II) infusion. These effects are thought to be mediated largely through superoxide anion (O(2)(-)) scavenging of nitric oxide (NO). Little is known about the role of ROS in acute vasoconstrictor responses to agonists. We investigated renal blood flow (RBF) reactivity to ANG II (4 ng), norepinephrine (NE, 20 ng), and alpha(1)-adrenergic agonist phenylephrine (PE, 200 ng) injected into the renal artery (ira) of anesthetized Sprague-Dawley rats. The NOX inhibitor apocynin (1-4 mg.kg(-1).min(-1) ira, 2 min) or the superoxide dismutase mimetic Tempol (1.5-5 mg.kg(-1).min(-1) ira, 2 min) rapidly increased resting RBF by 8 +/- 1% (P < 0.001) or 3 +/- 1% (P < 0.05), respectively. During NO synthase (NOS) inhibition (N(omega)-nitro-l-arginine methyl ester, 25 mg/kg iv), the vasodilation tended to increase (apocynin 13 +/- 4%, Tempol 10 +/- 1%). During control conditions, both ANG II and NE reduced RBF by 24 +/- 4%. Apocynin dose dependently reduced the constriction by up to 44% (P < 0.05). Similarly, Tempol blocked the acute actions of ANG II and NE by up to 48-49% (P < 0.05). In other animals, apocynin (4 mg.kg(-1).min(-1) ira) attenuated vasoconstriction to ANG II, NE, and PE by 46-62% (P < 0.01). During NOS inhibition, apocynin reduced the reactivity to ANG II and NE by 60-72% (P < 0.01), and Tempol reduced it by 58-66% (P < 0.001). We conclude that NOX-derived ROS substantially contribute to basal RBF as well as to signaling of acute renal vasoconstrictor responses to ANG II, NE, and PE in normal rats. These effects are due to O(2)(-) rather than H(2)O(2), occur rapidly, and are independent of scavenging of NO.  相似文献   

13.
Thyroid hormones are key regulators of basal metabolic state and oxidative metabolism. Hyperthyroidism has been reported to cause significant alterations in hemodynamics, and in cardiac and diaphragm muscle functions, all of which have been linked to increased oxidative stress. However, the definite source of increased reactive oxygen species (ROS) in each of these phenotypes is still unknown. The goal of the current study was to test the hypothesis that thyroxin (T4) may produce distinct hemodynamic, cardiac, and diaphragm muscle abnormalities by differentially affecting various sources of ROS. Wild-type and T4 mice with and without 2-week treatments with allopurinol (xanthine oxidase inhibitor), apocynin (NADPH oxidase inhibitor), L-NIO (nitric oxide synthase inhibitor), or MitoTEMPO (mitochondria-targeted antioxidant) were studied. Blood pressure and echocardiography were noninvasively evaluated, followed by ex vivo assessments of isolated heart and diaphragm muscle functions. Treatment with L-NIO attenuated the T4-induced hypertension in mice. However, apocynin improved the left-ventricular (LV) dysfunction without preventing the cardiac hypertrophy in these mice. Both allopurinol and MitoTEMPO reduced the T4-induced fatigability of the diaphragm muscles. In conclusion, we show here for the first time that T4 exerts differential effects on various sources of ROS to induce distinct cardiovascular and skeletal muscle phenotypes. Additionally, we find that T4-induced LV dysfunction is independent of cardiac hypertrophy and NADPH oxidase is a key player in this process. Furthermore, we prove the significance of both xanthine oxidase and mitochondrial ROS pathways in T4-induced fatigability of diaphragm muscles. Finally, we confirm the importance of the nitric oxide pathway in T4-induced hypertension.  相似文献   

14.
Cardiovascular and renal inflammation induced by Aldosterone (Aldo) plays an important role in the pathogenesis of hypertension and renal fibrosis. Toll-like receptor 4 (TLR4) signaling contributes to inflammatory cardiovascular and renal diseases, but its role in Aldo-induced hypertension and renal damage is not clear. In the current study, rats were treated with Aldo-salt combined with TAK-242 (a TLR4 signaling antagonist) for 4 weeks. Hemodynamic, cardiac and renal parameters were assayed at the indicated time. We found that Aldo-salt–treated rats present cardiac and renal hypertrophy and dysfunction. Cardiac and renal expression levels of TLR4 as well as levels of molecular markers attesting inflammation and fibrosis are increased by Aldo infusion, whereas the treatment of TAK-242 reverses these alterations. TAK-242 suppresses cardiac and renal inflammatory cytokines levels (TNF-a, IL-1β and MCP-1). Furthermore, TAK-242 inhibits hypertension, cardiac and renal fibrosis, and also attenuates the Aldo-induced Epithelial-Mesenchymal Transition (EMT). In experimental hyperaldosteronism, upregulation of TLR4 is correlated with cardiac and renal fibrosis and dysfunction, and a TLR4 signaling antagonist, TAK-242, can reverse these alterations. TAK-242 may be a therapeutic option for salt-sensitive hypertension and renal fibrosis.  相似文献   

15.
Lee HS  Son SM  Kim YK  Hong KW  Kim CD 《Life sciences》2003,72(24):2719-2730
Reactive oxygen species (ROS) have been implicated in the pathogenesis of vascular dysfunction in diabetes mellitus, and NAD(P)H oxidase is known as the most important source of ROS in the vasculatures. To determine whether NAD(P)H oxidase is a major participant in the critical intermediary signaling events in high glucose (HG, 25 mM)-induced proliferation of vascular smooth muscle cells (VSMC), we investigated in explanted aortic VSMC from rats the role of NAD(P)H oxidase on the HG-related cellular proliferation and superoxide production. VSMC under HG condition had increased proliferative capacity that was inhibited by tiron (1 mM), a cell membrane permeable superoxide scavenger, but not by SOD, which is not permeable to cell membrane. The nitroblue tetrazolium staining in the HG-exposed VSMC was more prominent than that of VSMC under normal glucose (5.5 mM) condition, which was significantly inhibited by DPI (10 microM), an NAD(P)H oxidase inhibitor, but not by inhibitors for other oxidases such as NADH dehydrogenase, xanthine oxidase, and nitric oxide synthase. In the VSMC under HG condition, the enhanced NAD(P)H oxidase activity with increased membrane translocation of Rac1 was observed, but the protein expression of p22phox and gp91phox was not increased. These data suggest that HG-induced changes in VSMC proliferation are related to the intracellular production of superoxide through enhanced activity of NAD(P)H oxidase.  相似文献   

16.
Cardiovascular and renal inflammation induced by Aldosterone (Aldo) plays a pivotal role in the pathogenesis of hypertension and renal fibrosis. GSK‐3β contributes to inflammatory cardiovascular and renal diseases, but its role in Aldo‐induced hypertension, and renal damage is not clear. In the present study, rats were treated with Aldo combined with SB‐216763 (a GSK‐3β inhibitor) for 4 weeks. Hemodynamic, cardiac, and renal parameters were assayed at the indicated time. Here we found that rats treated with Aldo presented cardiac and renal hypertrophy and dysfunction. Cardiac and renal expression levels of molecular markers attesting inflammation and fibrosis were increased by Aldo infusion, whereas the treatment of SB‐216763 reversed these alterations. SB‐216763 suppressed cardiac and renal inflammatory cytokines levels (TNF‐a, IL‐1β, and MCP‐1). Meanwhile, SB‐216763 increased the protein levels of LC3‐II in the cardiorenal tissues as well as p62 degradation, indicating that SB‐216763 induced autophagy activation in cardiac, and renal tissues. Importantly, inhibition of autophagy by 3‐MA attenuated the role of SB‐216763 in inhibiting perivascular fibrosis, and tubulointerstitial injury. These data suggest that SB‐216763 protected against Aldo‐induced cardiac and renal injury by activating autophagy, and might be a therapeutic option for salt‐sensitive hypertension and renal fibrosis.  相似文献   

17.
Carbon monoxide (CO), one of the end products of heme oxygenase activity, inhibits smooth muscle proliferation by decreasing ERK1/2 phosphorylation and cyclin D1 expression, a signaling pathway that is known to be modulated by reactive oxygen species (ROS) in airway smooth muscle cells (ASMCs). Two important sources of ROS involved in cell signaling are the membrane NAD(P)H oxidase and the mitochondrial respiratory chain. Thus, that CO could modulate redox signaling in ASMCs by interacting with the heme moiety of NAD(P)H oxidase and/or the respiratory chain is a plausible hypothesis. Here we show that a recently identified carbon monoxide-releasing molecule, [Ru(CO)3Cl2]2 (or CORM-2) 1) inhibits NAD(P)H oxidase cytochrome b558 activity, 2) increases oxidant production by the mitochondria, and 3) inhibits ASMC proliferation and phosphorylation of the ERK1/2 mitogen-activated protein kinase and expression of cyclin D1, two critical pathways involved in muscle proliferation. No such effects were observed with the negative control (Ru(Me2SO)4Cl2), which does not contain CO groups. Because both diphenylene iodinium or apocynin (inhibitors of NAD(P)H oxidase) and rotenone (a molecule that increases mitochondrial ROS production by blocking the respiratory chain) mimicked the effect of CORM-2 on cyclin D1 expression and ASMC proliferation, the antiproliferative effect of CORM-2 is probably related to inhibition of cytochromes on both NAD(P)H oxidase and the respiratory chain. The involvement of increased mitochondria-derived oxidants is substantiated by the findings showing that the antioxidant N-acetylcysteine partially inhibited the effects of CORM-2. This study provides a new mechanism to explain redox signaling by CO.  相似文献   

18.
NADPH oxidase (NOX) is a predominant source of reactive oxygen species (ROS), and the activity of NOX, which uses NADPH as a common rate-limiting substrate, is upregulated by prolonged dietary salt intake. β-Lapachone (βL), a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), decreases the cellular NAD(P)H/NAD(P)(+) ratio via activation of NQO1. In this study, we evaluated whether NQO1 activation by βL modulates salt-induced renal injury associated with NOX-derived ROS regulation in an animal model. Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet were used to investigate the renoprotective effect of NQO1 activation. βL treatment significantly lowered the cellular NAD(P)H:NAD(P)(+) ratio and dramatically reduced NOX activity in the kidneys of HS diet-fed DS rats. In accordance with this, total ROS production and expression of oxidative adducts also decreased in the βL-treated group. Furthermore, HS diet-induced proteinuria and glomerular damage were markedly suppressed, and inflammation, fibrosis, and apoptotic cell death were significantly diminished by βL treatment. This study is the first to demonstrate that activation of NQO1 has a renoprotective effect that is mediated by NOX activity via modulation of the cellular NAD(P)H:NAD(P)(+) ratio. These results provide strong evidence that NQO1 might be a new therapeutic target for the prevention of salt-induced renal injury.  相似文献   

19.
In the present study, the possible involvement of reactive oxygen species (ROS) in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis of Bombyx mori prothoracic glands (PGs) was investigated. Results showed that PTTH treatment resulted in a rapidly transient increase in the intracellular ROS concentration, as measured using 2′,7′-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant, N-acetylcysteine (NAC), abolished PTTH-induced increase in fluorescence. Furthermore, PTTH-induced ROS production was partially inhibited by the NAD(P)H oxidase inhibitor, apocynin, indicating that NAD(P)H oxidase is one of the sources for PTTH-stimulated ROS production. Four mitochondrial oxidative phosphorylation inhibitors (rotenone, antimycin A, the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), and diphenylene iodonium (DPI)) significantly attenuated ROS production induced by PTTH. These data suggest that the activity of complexes I and III in the electron transport chain and the mitochondrial inner membrane potential (ΔΨ) contribute to PTTH-stimulated ROS production. In addition, PTTH-stimulated ecdysteroidogenesis was greatly inhibited by treatment with either NAC or mitochondrial inhibitors (rotenone, antimycin A, FCCP, and DPI), but not with apocynin. These results indicate that mitochondria-derived, but not membrane NAD(P)H oxidase-mediated ROS signaling, is involved in PTTH-stimulated ecdysteroidogenesis of PGs in B. mori.  相似文献   

20.
The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone (DOCA)-salt-, and N(ω)-nitro-L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3',5'-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号