首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L Marty  C Cajean  F Suarez  M Girard 《Biochimie》1976,58(9):1113-1122
The technique of density labeling of DNA by BrdU was used to characterize the material synthesized in vitro by cytoplasmic extracts of SV40 infected cells incubated in the presence of simian virus 40 (SV40) DNA component I molecules (Girard et al, Biochimie, this volume). In a first experiment, the template was labeled beforehand in vivo using [14C]-BrdU, and the in vitro incubation was carried out in the presence of [3H]-dGTP and [3H]-dTTP. In a second experiment, the template was labeled in vivo with 32P, and the in vitro incubation was in the presence of [3H]-dGTP and BrdUTP. After digestion with the restriction endonuclease Hind II + III, the fragments from the end products of the reaction were analyzed by density gradient centrifugation, at pH 7 and pH 13. In both experiments the DNA product molecules had the same density as the resepctive DNA templates. Cellular enzymes seem to be responsible for this in vitro synthesis of DNA, since cytoplasmic extracts from uninfected cells were almost as active as those from SV40 infected cells. The system was proved efficient in the conversion of "open circular" molecules (component II DNA molecules) to covalently closed circular DNA molecules (relaxed component I molecules). The use of DNA complexed with histones did not impart viral specificity to the system. It is concluded that the cytoplasmic extract is only capable of supporting the repair synthesis of added viral DNA.  相似文献   

2.
3.
About 50% of the SV40 DNA in the process of replication (sv40(ri) dna) completed replication in lysates of infected BSC-1 cells by conversion to covalently closed, superhelical SV40 DNA (SV40(I) DNA). Fractionation of the lysate into nuclear and cytoplasmic components blocked 99% of the synthesis of SV40(I) DNA in the purified nuclei. The reconstituted system, made by adding back the cytoplasmic fraction before incubation at 30 degrees, completely restored the in vitro level of SV40(I) DNA synthesis. Preliminary characterization of the activity found in the cytoplasmic fraction suggested it was a soluble, heat-labile protein (or proteins) with a minimum molecular weight of about 30,000 and an active sulfhydryl group. The activity was present in both infected and uninfected monkey cells, and at a lower level in mouse, hamster, and human cell lines. Neither serum starvation nor cycloheximide treatment of cells diminished the activity in the cytoplasmic fraction. Purified cytoplasmic DNA polymerase from KB cells did not substitute for the cytoplasmic fraction which was required for elongation of newly synthesized DNA strands. In the absence of the cytoplasmic fraction, conversion of 4 S DNA into longer strands was inhibited, and SV40(RI) DNA appeared to be broken specifically at the replication forks.  相似文献   

4.
H Ariga 《Nucleic acids research》1986,14(23):9457-9470
We have previously developed simian virus 40 (SV40) DNA replication system in vitro (Ariga and Sugano, J. Virol. 48, 481, 1983). This system is composed of human HeLa or mouse FM3A nuclear extract and cytoplasmic extract of SV40 infected CosI cells. Here FM3A nuclear extract was fractionated by DEAE Sephacel and single-stranded DNA cellulose chromatography into three components required for accurate in vitro SV40 DNA replication. One fraction (A fraction) contained DNA polymerase-primase, and the second component (B fraction) contained DNA topoisomerase. Third component was further purified to near homogenuity using DEAE-Sephacel, single-stranded DNA cellulose, and glycerol gradient centrifugation. The purified protein (named factor I) bound to the origin containing fragment of SV40 DNA. The factor I enhanced the initiation of SV40 DNA replication catalyzed by SV40 infected CosI cytoplasm alone. When all four fractions consisting of A, B fractions, factor I, and SV40 infected CosI cytoplasm were mixed together, the system was reconstituted, meaning that initiation and subsequent elongation were completed to generate the full sized daughter molecules.  相似文献   

5.
In vivo-labeled SV40 replicating DNA molecules can be converted into covalently closed superhelical SV40 DNA (SV40(I) using a lysate of sv40-infected monkey cells containing intact nuclei. Replication in vitro occurred at one-third the in vivo rate for 30 min at 30 degrees. After 1 hour of incubation, about 54% of the replicating molecules had been converted to SV40(I), 5% to nicked, circular molecules (SV40(II), 5% to covalently closed dimers; the remainder failed to complete replication although 75% of the prelabeled daughter strands had been elongated to one-genome length. Density labeling in vitro showed that all replicating molecules had participated during DNA synthesis in vitro. Velocity and equilibrium sedimentation analysis of pulse-chased and labeled DNA using radioactive and density labels suggested that SV40 DNA synthesis in vitro was a continuation of normal ongoing DNA synthesis. Initiation of new rounds of SV40 DNA replication was not detectable.  相似文献   

6.
7.
Initiation of simian virus 40 DNA replication in vitro.   总被引:28,自引:3,他引:25       下载免费PDF全文
Exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro by a mixture of a soluble extract of HeLa cell nuclei and the cytoplasm from SV40-infected CosI cells. When cloned DNA was used as a template, the clone containing the SV40 origin of DNA replication was active, but a clone lacking the SV40 origin was inactive. The major products of the in vitro reaction were form I and form II SV40 DNAs and a small amount of form III. DNA synthesis in extracts began at or near the in vivo origin of SV40 DNA synthesis and proceeded bidirectionally. The reaction was inhibited by the addition of anti-large T hamster serum, aphidicolin, or RNase but not by ddNTP. Furthermore, this system was partially reconstituted between HeLa nuclear extract and the semipurified SV40 T antigen instead of the CosI cytoplasm. It is clear from these two systems that the proteins containing SV40 T antigen change the nonspecific repair reaction performed by HeLa nuclear extract alone to the specific semiconservative DNA replication reaction. These results show that these in vitro systems closely resemble SV40 DNA replication in vivo and provide an assay that should be useful for the purification and subsequent characterization of viral and cellular proteins involved in DNA replication.  相似文献   

8.
9.
10.
SV40 chromatin structure is not essential for viral gene expression   总被引:5,自引:0,他引:5  
The biological activity and the fate of SV40 DNA (minichromosomes, DNA I, DNA II, DNA III) were tested in culture cells by immunofluorescence staining and blot analysis. Following microinjection of 2-4 circular SV40 molecules (minichromosomes, DNA I, DNA II) into the cytoplasm or the nuclei of monkey and rat cells, T- and V-antigen synthesis was demonstrable in nearly every recipient cell. Only linear DNA induced T-antigen synthesis with a very low efficiency after cytoplasmic injection. This low activity correlates with a rapid degradation of DNA III in the recipient cells. Further modifications observed immediately after injection are relaxation of superhelical molecules and formation of high-Mr DNA. Assembly of the injected DNA into SV40 chromatin-like structure, however, occurred only late after early viral gene expression.  相似文献   

11.
A cell-free DNA replication system dependent upon five purified cellular proteins, one crude cellular fraction, and the simian virus 40 (SV40)-encoded large tumor antigen (T antigen) initiated and completed replication of plasmids containing the SV40 origin sequence. DNA synthesis initiated at or near the origin sequence after a time lag of approximately 10 min and then proceeded bidirectionally from the origin to yield covalently closed, monomer daughter molecules. The time lag could be completely eliminated by a preincubation of SV40 ori DNA in the presence of T antigen, a eucaryotic single-stranded DNA-binding protein (replication factor A [RF-A]), and topoisomerases I and II. In contrast, if T antigen and the template DNA were incubated alone, the time lag was only partially decreased. Kinetic analyses of origin recognition by T antigen, origin unwinding, and DNA synthesis suggest that the time lag in replication was due to the formation of a complex between T antigen and DNA called the T complex, followed by formation of a second complex called the unwound complex. Formation of the unwound complex required RF-A. When origin unwinding was coupled to DNA replication by the addition of a partially purified cellular fraction (IIA), DNA synthesis initiated at the ori sequence, but the template DNA was not completely replicated. Complete DNA replication in this system required the proliferating-cell nuclear antigen and another cellular replication factor, RF-C, during the elongation stage. In a less fractionated system, another cellular fraction, SSI, was previously shown to be necessary for reconstitution of DNA replication. The SSI fraction was required in the less purified system to antagonize the inhibitory action of another cellular protein(s). This inhibitor specifically blocked the earliest stage of DNA replication, but not the later stages. The implications of these results for the mechanisms of initiation and elongation of DNA replication are discussed.  相似文献   

12.
The maturation of replicating simian virus 40 (SV40) chromosomes into superhelical viral DNA monomers [SV40(I) DNA] was analyzed in both intact cells and isolated nuclei to investigate further the role of soluble cytosol factors in subcellular systems. Replicating intermediates [SV40(RI) DNA] were purified to avoid contamination by molecules broken at their replication forks, and the distribution of SV40(RI) DNA as a function of its extent of replication was analyzed by gel electrophoresis and electron microscopy. With virus-infected CV-1 cells, SV40(RI) DNA accumulated only when replication was 85 to 95% completed. These molecules [SV40(RI*) DNA] were two to three times more prevalent than an equivalent sample of early replicating DNA, consistent with a rate-limiting step in the separation of sibling chromosomes. Nuclei isolated from infected cells permitted normal maturation of SV40(RI) DNA into SV40(I) DNA when the preparation was supplemented with cytosol. However, in the absence of cytosol, the extent of DNA synthesis was diminished three- to fivefold (regardless of the addition of ribonucleotide triphosphates), with little change in the rate of synthesis during the first minute; also, the joining of Okazaki fragments to long nascent DNA was inhibited, and SV40(I) DNA was not formed. The fraction of short-nascent DNA chains that may have resulted from dUTP incorporation was insignificant in nuclei with or without cytosol. Pulse-chase experiments revealed that joining, but not initiation, of Okazaki fragments required cytosol. Cessation of DNA synthesis in nuclei without cytosol could be explained by an increased probability for cleavage of replication forks. These broken molecules masqueraded during gel electrophoresis of replicating DNA as a peak of 80% completed SV40(RI) DNA. Failure to convert SV40(RI*) DNA into SV40(I) DNA under these conditions could be explained by the requirement for cytosol to complete the gap-filling step in Okazaki fragment metabolism: circular monomers with their nascent DNA strands interrupted in the termination region [SV40(II*) DNA] accumulated with unjoined Okazaki fragments. Thus, separation of sibling chromosomes still occurred, but gaps remained in the terminal portions of their daughter DNA strands. These and other data support a central role for SV40(RI*) and SV40(II*) DNAs in the completion of viral DNA replication.  相似文献   

13.
The effects of topoisomerases I and II on the replication of SV40 DNA were examined using an in vitro replication system of purified proteins that constitutes the monopolymerase system. In the presence of the two topoisomerases, two distinct nascent DNAs were formed. One product arising from the replication of the leading template strand was approximately half the size of the template DNA, whereas the other product derived from the lagging template strand consisted of short DNAs. These products were synthesized from both SV40 naked DNA and SV40 chromosomes. For the replication of SV40 naked DNA, either topoisomerase I or II maintained replication fork movement and supported complete leading strand synthesis. When SV40 chromosomes were replicated with the same proteins, reactions containing only topoisomerase I produced shorter leading strands. However, mature size DNA products accumulated in reactions supplemented with topoisomerase II, as well as in reactions containing only topoisomerase II. In the presence of crude extracts of HeLa cells, VP-16, a specific inhibitor of topoisomerase II, blocked elongation of the nascent DNA during the replication of SV40 chromosomes. These results indicate that topoisomerase II plays a crucial role as a swivelase in the late stage of SV40 chromosome replication in vitro.  相似文献   

14.
15.
The effect of different divalent metal ions on the hydrolysis of DNA by DNase I was studied with an assay which distinguishes between cleavage of one or both strands of the DNA substrate during initial encounters between enzyme and DNA. Using covalently closed superhelical SV40(I) DNA as substrate, initial reaction products consisting of relaxed circles or unit-length linears are resolved by electrophoresis of radioactively labeled DNA in agarose gels. Only in the presence of a transition metal ion, such as Mn2+ or Co2+, and only under certain reaction conditions, is DNase I able to cut both DNA strands at or near the same point, generating unit-length linears. This ability to cut both DNA strands is inhibited by such factors as temperature decrease, the addition of a monovalent ion or another divalent cation which is not a transition metal ion, or a reduction in the number of superhelical turns in the DNA substrate. All of these factors lead to a winding of the duplex helix and antagonize the unwinding of the duplex promoted by transition metal ion binding. Transition metal ions may thus convert the DNA substrate locally to a form in which DNase I can introduce breaks into both strands. In the presence of Mg2+, DNase I introduces single strand nicks into SV40(I), generating exclusively the covalently open, relaxed circular SV40(II) as the initial product of the reaction. In the presence of Mn2+, DNase I generates as initial products a mixture of SV40(II) and unit-length SV40 linear DNA molecules, formed by two nicks in opposite strands at or near the same point in the duplex. These circular SV40(II) molecules consist of two types. A minority class is indistinguishable from the nicked SV40(II) produced by DNase I in the presence of Mg2+. The majority class consists of molecules containing a gap in one of the two strands, the mean length of the gap being 11 nucleotides. The SV40(L) molecules produced in the presence of Mn2+ appear to have single strand extensions at one or both ends.  相似文献   

16.
Simian virus 40 large T antigen untwists DNA at the origin of DNA replication.   总被引:18,自引:0,他引:18  
Simian virus 40 large tumor antigen (SV40 T antigen) untwists DNA at the SV40 replication origin. In the presence of ATP, T antigen shifted the average linking number of an SV40 origin-containing plasmid topoisomer distribution. The loss of up to two helical turns was detected. The reaction required the presence of the 64-base pair core origin of replication containing T antigen DNA binding site II; binding site I had no effect on the untwisting reaction. The presence of human single-stranded DNA binding protein (SSB) slightly reduced the degree of untwisting in the presence of ATP. ATP hydrolysis was not required since untwisting occurred in the presence of nonhydrolyzable analogs of ATP. However, in the presence of a nonhydrolyzable analog of ATP, the requirement for the SV40 origin sequence was lost. The origin requirement for DNA untwisting was also lost in the absence of dithiothreitol. The origin-specific untwisting activity of T antigen is distinct from its DNA helicase activity, since helicase activity does not require the SV40 origin but does require ATP hydrolysis. The lack of a requirement for SSB or ATP hydrolysis and the reduction in the pitch of the DNA helix by just a few turns at the replication origin distinguishes this reaction from the T antigen-mediated DNA unwinding reaction, which results in the formation of a highly underwound DNA molecule. Untwisting occurred without a lag after the start of the reaction, whereas unwound DNA was first detected after a lag of 10 min. It is proposed that the formation of a multimeric T antigen complex containing untwisted DNA at the SV40 origin is a prerequisite for the initiation of DNA unwinding and replication.  相似文献   

17.
The digestion products of superhelical component I of SV40 DNA incubated with various concentrations of nuclease S1 from Aspergillus Oryzae, an enzyme specific for single-stranded nucleic acid, were studied. The enzyme shows a preference for supercoiled DNA I as opposed to relaxed DNA II molecules, and converts SV40 DNA I into linear molecules. Conditions have been developed under which the majority of SV40 DNA I molecules is converted into form II DNA. By using high concentrations of enzyme, it was possible to introduce further breaks in the DNA molecule; by increasing ionic strengh or using SDS this activity was not eliminated.  相似文献   

18.
A transient decaribonucleotide (iRNA) is covalently linked to nascent eukaryotic DNA chains at their 5' end. Searching for the putative iRNA polymerase (primase), we detected in extracts from SV40-infected cells a DNA-dependent incorporation of UMP residues from UTP into free and DNA linked deca- or similarly sized ribonucleotides. Denatured salmon sperm DNA served as the standard template in this reaction. SV40 FIII DNA was also an effective template, SV40 FII DNA was ineffective while FI yielded mainly free decaribonucleotides. The incorporation depended on the other rNTPs and was resistant to high concentrations of alpha-amanitin and rifamycin AF/013, drugs inhibitory to RNA polymerases I, II and III. The results implicate the decaribonucleotide polymerase in the priming of nascent DNA chains and suggest that the unique size of iRNA is encoded within its primase.  相似文献   

19.
A single-stranded DNA-dependent ATPase from monkey kidney tissue culture cells (CV-1) has been found associated with SV40 chromatin. This ATPase activity is distinguishable from the ATPase activity of T-antigen by the following properties: the Km for ATP, elution from phosphocellulose, and stimulation of the ATPase activity by single-stranded DNA but not by double-stranded DNA. The ATPase has been isolated and characterized from the nuclei of uninfected cells. ATP hydrolysis is dependent on single-stranded DNA and a divalent cation. The km values for ATP and single-stranded DNA are 0.024 mM and 0.09 microgram/ml, respectively. The affinity of the ATPase for single-stranded DNA is sufficiently high that the enzyme co-sediments with single-stranded DNA in glycerol gradients. The binding of single-stranded DNA is independent of ATP and MgCl2; however, ATP hydrolysis increases the exchange of enzyme between different DNA molecules. Form I (superhelical) SV40 DNA is also a substrate for ATPase binding, but relaxed Form I, Form II (nicked circular), and double-stranded linear SV40 DNAs are not substrates. Because the DNA helix within chromatin is not under the same kind of tortional strain as Form I DNA, we hypothesize that the ATPase is bound to the single-stranded regions of replication forks in the SV40 chromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号