首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Past population size can be estimated from modern genetic diversity using coalescent theory. Estimates of ancestral human population dynamics in sub-Saharan Africa can tell us about the timing and nature of our first steps towards colonizing the globe. Here, we combine Bayesian coalescent inference with a dataset of 224 complete human mitochondrial DNA (mtDNA) sequences to estimate effective population size through time for each of the four major African mtDNA haplogroups (L0-L3). We find evidence of three distinct demographic histories underlying the four haplogroups. Haplogroups L0 and L1 both show slow, steady exponential growth from 156 to 213kyr ago. By contrast, haplogroups L2 and L3 show evidence of substantial growth beginning 12-20 and 61-86kyr ago, respectively. These later expansions may be associated with contemporaneous environmental and/or cultural changes. The timing of the L3 expansion--8-12kyr prior to the emergence of the first non-African mtDNA lineages--together with high L3 diversity in eastern Africa, strongly supports the proposal that the human exodus from Africa and subsequent colonization of the globe was prefaced by a major expansion within Africa, perhaps driven by some form of cultural innovation.  相似文献   

2.
Hunting wild African harlequin quails (Coturnix delegorguei delegorguei) using traditional methods in Western Kenya has been ongoing for generations, yet their genetic diversity and evolutionary history are largely unknown. In this study, the genetic variation and demographic history of wild African harlequin quails were assessed using a 347bp mitochondrial DNA (mtDNA) control region fragment and 119,339 single nucleotide polymorphisms (SNPs) from genotyping‐by‐sequencing (GBS) data. Genetic diversity analyses revealed that the genetic variation in wild African harlequin quails was predominantly among individuals than populations. Demographic analyses indicated a signal of rapid demographic expansion, and the estimated time since population expansion was found to be 150,000–350,000 years ago, corresponding to around the Pliocene–Pleistocene boundary. A gradual decline in their effective population size was also observed, which raised concerns about their conservation status. These results provide the first account of the genetic diversity of wild African harlequin quails of Siaya, thereby creating a helpful foundation in their biodiversity conservation.  相似文献   

3.
Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human–chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1–1.5, 1.1–0.76 and 0.25–0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.  相似文献   

4.

Background

A major unanswered question in the evolution of Homo sapiens is when anatomically modern human populations began to expand: was demographic growth associated with the invention of particular technologies or behavioral innovations by hunter-gatherers in the Late Pleistocene, or with the acquisition of farming in the Neolithic?

Methodology/Principal Findings

We investigate the timing of human population expansion by performing a multilocus analysis of≥20 unlinked autosomal noncoding regions, each consisting of ∼6 kilobases, resequenced in ∼184 individuals from 7 human populations. We test the hypothesis that the autosomal polymorphism data fit a simple two-phase growth model, and when the hypothesis is not rejected, we fit parameters of this model to our data using approximate Bayesian computation.

Conclusions/Significance

The data from the three surveyed non-African populations (French Basque, Chinese Han, and Melanesians) are inconsistent with the simple growth model, presumably because they reflect more complex demographic histories. In contrast, data from all four sub-Saharan African populations fit the two-phase growth model, and a range of onset times and growth rates is inferred for each population. Interestingly, both hunter-gatherers (San and Biaka) and food-producers (Mandenka and Yorubans) best fit models with population growth beginning in the Late Pleistocene. Moreover, our hunter-gatherer populations show a tendency towards slightly older and stronger growth (∼41 thousand years ago, ∼13-fold) than our food-producing populations (∼31 thousand years ago, ∼7-fold). These dates are concurrent with the appearance of the Late Stone Age in Africa, supporting the hypothesis that population growth played a significant role in the evolution of Late Pleistocene human cultures.  相似文献   

5.
Anopheles dirus and Anopheles baimaii are closely related species which feed on primates, particularly humans, and transmit malaria in the tropical forests of mainland Southeast Asia. Here, we report an in-depth phylogeographic picture based on 269 individuals from 21 populations from mainland Southeast Asia. Analysis of 1537 bp of mtDNA sequence revealed that the population history of A. baimaii is far more complex than previously thought. An old expansion (pre-300 kyr BP) was inferred in northern India/Bangladesh with a wave of south-eastwards expansion arriving at the Thai border (ca 135-173 kyr BP) followed by leptokurtic dispersal very recently (ca 16 kyr BP) into peninsular Thailand. The long and complex population history of these anthropophilic species suggests their expansions are not in response to the relatively recent (ca 40 kyr BP) human expansions in mainland Southeast Asia but, rather, fit well with our understanding of Pleistocene climatic change there.  相似文献   

6.
Sedimentological studies including seismic profiles, mineralogy and organic geochemistry on two cores from the center and margin of Caçó Lake, Maranhão State, northern Brazil, revealed variable climatic and environmental conditions during the last 21 cal kyr BP. Between 21 and 17 cal kyr BP, during the Late Glacial Maximum, regional climate was predominantly dry, interrupted by short humid phases, as reflected by a succession of very thin layers of sand and organic matter. The Late Pleistocene climate was relatively wet as is suggested by rapid lake-level rise and forest expansion. The Late Pleistocene humid climate differed significantly from present conditions. We suggest that Late Glacial humid conditions were the consequence of intensification of the Inter-Tropical Convergence Zone or shifts of its position, resulting in Antarctic cold-front occurrences. The abrupt climatic changes during this period were marked by siderite deposition into Caçó Lake, which appears to be related to regional hydrologic changes linked to global/Northern Hemisphere events. The Holocene was characterized by lower moisture availability and a distinct dry period until 7 cal kyr BP, in response to South American insolation conditions.  相似文献   

7.
K Inoue  E M Monroe  C L Elderkin  D J Berg 《Heredity》2014,112(3):282-290
Freshwater organisms of North America have had their contemporary genetic structure shaped by vicariant events, especially Pleistocene glaciations. Life history traits promoting dispersal and gene flow continue to shape population genetic structure. Cumberlandia monodonta, a widespread but imperiled (IUCN listed as endangered) freshwater mussel, was examined to determine genetic diversity and population genetic structure throughout its range. Mitochondrial DNA sequences and microsatellite loci were used to measure genetic diversity and simulate demographic events during the Pleistocene using approximate Bayesian computation (ABC) to test explicit hypotheses explaining the evolutionary history of current populations. A phylogeny and molecular clock suggested past isolation created two mtDNA lineages during the Pleistocene that are now widespread. Two distinct groups were also detected with microsatellites. ABC simulations indicated the presence of two glacial refugia and post-glacial admixture of them followed by simultaneous dispersal throughout the current range of the species. The Ouachita population is distinct from others and has the lowest genetic diversity, indicating that this is a peripheral population of the species. Gene flow within this species has maintained high levels of genetic diversity in most populations; however, all populations have experienced fragmentation. Extirpation from the center of its range likely has isolated remaining populations due to the geographic distances among them.  相似文献   

8.
In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within‐ and among‐population genetic diversity using phylogeographic reconstructions, tests of isolation‐by‐distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation‐by‐distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine–Corsica–Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid‐Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east–west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.  相似文献   

9.
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.  相似文献   

10.
In order to evaluate the biogeographical hypothesis that the Norwegian lemming (Lemmus lemmus) survived the last glacial period in some Scandinavian refugia, we examined variation in the nucleotide sequence of the mitochondrial control region (402 base pairs (bp)) and the cytochrome b (cyt b) region (633 bp) in Norwegian and Siberian (Lemmus sibiricus) lemmings. The phylogenetic distinction and cyt b divergence estimate of 1.8% between the Norwegian and Siberian lemmings suggest that their separation pre-dated the last glaciation and imply that the Norwegian lemming is probably a relic of the Pleistocene populations from Western Europe. The star-like control region phylogeny and low mitochondrial DNA diversity in the Norwegian lemming indicate a reduction in its historical effective size followed by population expansion. The average estimate of post-bottleneck time (19-21 kyr) is close to the last glacial maximum (18-22 kyr BP). Taking these findings and the fossil records into consideration, it seems likely that, after colonization of Scandinavia in the Late Pleistocene, the Norwegian lemming suffered a reduction in its population effective size and survived the last glacial maximum in some local Scandinavian refugia, as suggested by early biogeographical work.  相似文献   

11.
Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent''s tale suggests that the sister group to modern O. phyllotis arose during the Miocene–Pliocene, diversified during the Pleistocene and went extinct in the Holocene.  相似文献   

12.
Previous mitochondrial DNA analyses on ancient European remains have suggested that the current distribution of haplogroup H was modeled by the expansion of the Bell Beaker culture (ca 4,500–4,050 years BP) out of Iberia during the Chalcolithic period. However, little is known on the genetic composition of contemporaneous Iberian populations that do not carry the archaeological tool kit defining this culture. Here we have retrieved mitochondrial DNA (mtDNA) sequences from 19 individuals from a Chalcolithic sample from El Mirador cave in Spain, dated to 4,760–4,200 years BP and we have analyzed the haplogroup composition in the context of modern and ancient populations. Regarding extant African, Asian and European populations, El Mirador shows affinities with Near Eastern groups. In different analyses with other ancient samples, El Mirador clusters with Middle and Late Neolithic populations from Germany, belonging to the Rössen, the Salzmünde and the Baalberge archaeological cultures but not with contemporaneous Bell Beakers. Our analyses support the existence of a common genetic signal between Western and Central Europe during the Middle and Late Neolithic and points to a heterogeneous genetic landscape among Chalcolithic groups.  相似文献   

13.
The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat.  相似文献   

14.
Understanding the history of forests and their species'' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation—coastal or swamp vs terra firme—in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees.  相似文献   

15.
The Brazilian rosewood (Dalbergia nigra) is an endangered tree endemic to the central Brazilian Atlantic Forest, one of the world''s most threatened biomes. The population diversity, phylogeographic structure and demographic history of this species were investigated using the variation in the chloroplast DNA (cpDNA) sequences of 185 individuals from 19 populations along the geographical range of the species. Fifteen haplotypes were detected in the analysis of 1297 bp from two non-coding sequences, trnV-trnM and trnL. We identified a strong genetic structure (FST=0.62, P<0.0001), with a latitudinal separation into three phylogeographic groups. The two northernmost groups showed evidence of having maintained historically larger populations than the southernmost group. Estimates of divergence times between these groups pointed to vicariance events in the Middle Pleistocene (ca. 350 000–780 000 years ago). The recurrence of past climatic changes in the central part of the Atlantic forest, with cycles of forest expansion and contraction, may have led to repeated vicariance events, resulting in the genetic differentiation of these groups. Based on comparisons among the populations of large reserves and small, disturbed fragments of the same phylogeographic group, we also found evidence of recent anthropogenic effects on genetic diversity. The results were also analysed with the aim of contributing to the conservation of D. nigra. We suggest that the three phylogeographic groups could be considered as three distinct management units. Based on the genetic diversity and uniqueness of the populations, we also indicate priority areas for conservation.  相似文献   

16.
Knowledge on faunal diversification in African rainforests remains scarce. We used phylogeography to assess (i) the role of Pleistocene climatic oscillations in the diversification of the African common pangolin (Manis tricuspis) and (ii) the utility of our multilocus approach for taxonomic delineation and trade tracing of this heavily poached species. We sequenced 101 individuals for two mitochondrial DNA (mtDNA), two nuclear DNA and one Y‐borne gene fragments (totalizing 2602 bp). We used a time‐calibrated, Bayesian inference phylogenetic framework and conducted character‐based, genetic and phylogenetic delineation of species hypotheses within African common pangolins. We identified six geographic lineages partitioned into western Africa, Ghana, the Dahomey Gap, western central Africa, Gabon and central Africa, all diverging during the Middle to Late Pleistocene. MtDNA (cytochrome b + control region) was the sole locus to provide diagnostic characters for each of the six lineages. Tree‐based Bayesian delimitation methods using single‐ and multilocus approaches gave high support for ‘species’ level recognition of the six African common pangolin lineages. Although the diversification of African common pangolins occurred during Pleistocene cyclical glaciations, causative correlation with traditional rainforest refugia and riverine barriers in Africa was not straightforward. We conclude on the existence of six cryptic lineages within African common pangolins, which might be of major relevance for future conservation strategies. The high discriminative power of the mtDNA markers used in this study should allow an efficient molecular tracing of the regional origin of African common pangolin seizures.  相似文献   

17.
Pathogenic mitochondrial DNA mutations are common in the general population   总被引:4,自引:2,他引:2  
Mitochondrial DNA (mtDNA) mutations are a major cause of genetic disease, but their prevalence in the general population is not known. We determined the frequency of ten mitochondrial point mutations in 3168 neonatal-cord-blood samples from sequential live births, analyzing matched maternal-blood samples to estimate the de novo mutation rate. mtDNA mutations were detected in 15 offspring (0.54%, 95% CI = 0.30–0.89%). Of these live births, 0.00107% (95% CI = 0.00087–0.0127) harbored a mutation not detected in the mother's blood, providing an estimate of the de novo mutation rate. The most common mutation was m.3243A→G. m.14484T→C was only found on sub-branches of mtDNA haplogroup J. In conclusion, at least one in 200 healthy humans harbors a pathogenic mtDNA mutation that potentially causes disease in the offspring of female carriers. The exclusive detection of m.14484T→C on haplogroup J implicates the background mtDNA haplotype in mutagenesis. These findings emphasize the importance of developing new approaches to prevent transmission.  相似文献   

18.
The processes responsible for cytonuclear discordance frequently remain unclear. Here, we employed an exon capture data set and demographic methods to test hypotheses generated by species distribution models to examine how contrasting histories of range stability vs. fluctuation have caused cytonuclear concordance and discordance in ground squirrel lineages from the Otospermophilus beecheyi species complex. Previous studies in O. beecheyi revealed three morphologically cryptic and highly divergent mitochondrial DNA lineages (named the Northern, Central and Southern lineages based on geography) with only the Northern lineage exhibiting concordant divergence for nuclear genes. Here, we showed that these mtDNA lineages likely formed in allopatry during the Pleistocene, but responded differentially to climatic changes that occurred since the last interglacial (~120,000 years ago). We find that the Northern lineage maintained a stable range throughout this period, correlating with genetic distinctiveness among all genetic markers and low migration rates with the other lineages. In contrast, our results suggested that the Southern lineage expanded from Baja California Sur during the Late Pleistocene to overlap and potentially swamp a contracting Central lineage. High rates of intraspecific gene flow between Southern lineage individuals among expansion origin and expansion edge populations largely eroded Central ancestry from autosomal markers. However, male‐biased dispersal in this system preserved signals of this past hybridization and introgression event in matrilineal‐biased X‐chromosome and mtDNA markers. Our results highlight the importance of range stability in maintaining the persistence of phylogeographic lineages, whereas unstable range dynamics can increase the tendency for lineages to merge upon secondary contact.  相似文献   

19.
Both present-day and past processes can shape connectivity of populations. Pleistocene vicariant events and dispersal have shaped the present distribution and connectivity patterns of aquatic species in the Indo-Pacific region. In particular, the processes that have shaped distribution of amphidromous goby species still remain unknown. Previous studies show that phylogeographic breaks are observed between populations in the Indian and Pacific Oceans where the shallow Sunda shelf constituted a geographical barrier to dispersal, or that the large spans of open ocean that isolate the Hawaiian or Polynesian Islands are also barriers for amphidromous species even though they have great dispersal capacity. Here we assess past and present genetic structure of populations of two amphidromous fish (gobies of the Sicydiinae) that are widely distributed in the Central West Pacific and which have similar pelagic larval durations. We analysed sections of mitochondrial COI, Cytb and nuclear Rhodospine genes in individuals sampled from different locations across their entire known range. Similar to other Sicydiinae fish, intraspecific mtDNA genetic diversity was high for all species (haplotype diversity between 0.9–0.96). Spatial analyses of genetic variation in Sicyopus zosterophorum demonstrated strong isolation across the Torres Strait, which was a geologically intermittent land barrier linking Australia to Papua New Guinea. There was a clear genetic break between the northwestern and the southwestern clusters in Si. zosterophorumST = 0.67502 for COI) and coalescent analyses revealed that the two populations split at 306 Kyr BP (95% HPD 79–625 Kyr BP), which is consistent with a Pleistocene separation caused by the Torres Strait barrier. However, this geographical barrier did not seem to affect Sm. fehlmanni. Historical and demographic hypotheses are raised to explain the different patterns of population structure and distribution between these species. Strategies aiming to conserve amphidromous fish should consider the presence of cryptic evolutionary lineages to prevent stock depletion.  相似文献   

20.
The niche construction model postulates that human bio-social evolution is composed of three inheritance domains, genetic, cultural and ecological, linked by feedback selection. This paper argues that many kinds of archaeological data can serve as proxies for human niche construction processes, and presents a method for investigating specific niche construction hypotheses. To illustrate this method, the repeated emergence of specialized reindeer (Rangifer tarandus) hunting/herding economies during the Late Palaeolithic (ca 14.7-11.5 kyr BP) in southern Scandinavia is analysed from a niche construction/triple-inheritance perspective. This economic relationship resulted in the eventual domestication of Rangifer. The hypothesis of whether domestication was achieved as early as the Late Palaeolithic, and whether this required the use of domesticated dogs (Canis familiaris) as hunting, herding or transport aids, is tested via a comparative analysis using material culture-based phylogenies and ecological datasets in relation to demographic/genetic proxies. Only weak evidence for sustained niche construction behaviours by prehistoric hunter-gatherer in southern Scandinavia is found, but this study nonetheless provides interesting insights into the likely processes of dog and reindeer domestication, and into processes of adaptation in Late Glacial foragers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号