首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
This report summarises the recent “Perspectives in Stem Cell Proteomics” meeting that was held at the Wellcome Trust Conference Centre, Hinxton, UK in March 2009. The aim of the meeting was to explore the current status of proteomics in stem cell biology. Several themes encompassing technological and biological studies demonstrated the close relationship that must exist between the two communities in order to maximise our understanding of stem cell behaviour. Highlights included new methods for induction of pluripotent stem cells, new data sets regarding protein expression and phosphorylation dynamics in differentiating cells and the potential for future exploitation in a therapeutic setting.  相似文献   

5.
6.
We recently described a novel form of cell division termed neosis, which appears to be the mode of escape of cells from senescence and is involved in the neoplastic transformation and progression of tumors (Cancer Biol & Therap 2004;3:207–18). Neosis is a parasexual somatic reduction division and is characterized by (1) DNA damage-induced senescence/mitotic crisis and polyploidization, (2) followed by production of aneuploid daughter cells via nuclear budding, (3) asymmetric cytokinesis and cellularization conferring extended, but, limited mitotic life span to the offspring, and (4) is repeated several times during tumor growth. The immediate neotic progeny are termed the Raju cells, which seem to transiently display stem cell properties. The Raju cells immediately undergo symmetric mitotic division and become mature tumor cells. Exposure of tumor cells to genotoxic agents yields neosis-derived Raju cell progenies that are resistant to genotoxins, thus contributing to the recurrence of drug-resistant tumor growth. Similar events have been described in the literature under different names through several decades, but have been neglected due to the lack of appreciation of the significance of this process in cancer biology. Here we review and interpret the literature in the light of our observations and the recent advances in self-renewal in cancer. Neosis paradigm of self-renewal of cancer growth is consistent with the telomere attrition, aging and origin of cancer cells after reactivation of telomerase, and constitutes an alternative to the cancer stem cell hypothesis. We summarize the arguments favoring Raju cells and not cancer stem cells, as the source of self-renewal in cancer and present a comprehensive hypothesis of carcinogenesis, encompassing various aspects of cancer biology including senescence, tumor suppressor genes, oncogenes, cell cycle checkpoints, genomic instability, polyploidy and aneuploidy, natural selection, apoptosis, endoapoptosis, development of resistance to radiotherapy and chemotherapy leading tumor progression into malignancy.  相似文献   

7.
In recent times, the epigenetic study of pluripotency based on cellular reprogramming techniques led to the creation of induced pluripotent stem cells. It has come to represent the forefront of a new wave of alternative therapeutic approaches in the field of stem cell therapy. Progress in drug development has saved countless lives, but there are numerous intractable diseases where curative treatment cannot be achieved through pharmacological intervention alone. Consequently, there has been an unfortunate rise in incidences of organ failures, degenerative disorders and cancers, hence novel therapeutic interventions are required. Stem cells have unique self-renewal and multilineage differentiation capabilities that could be harnessed for therapeutic purposes. Although a number of mature differentiated cells have been characterized in vitro, few have been demonstrated to function in a physiologically relevant context. Despite fervent levels of enthusiasm in the field, the reality is that other than the employment of haematopoietic stem cells, many other therapies have yet to be thoroughly proven for their therapeutic benefit and safety in application. This review shall focus on a discussion regarding the current status of stem cell therapy, the issues surrounding it and its future prospects with a general background on the regulatory networks underlying pluripotency.  相似文献   

8.
Embryonic stem cells (ESCs) are permanent cell lines that can be maintained in a pluripotent, undifferentiated state. Appropriate environmental stimuli can cause them to differentiate into cell types of all three germ layers both in vitro and in vivo. Embryonic stem cells bear many opportunities for clinical applications in tissue engineering and regenerative medicine. Whereas most of our knowledge on the biology and technology of ESCs is derived from studies with mouse cells, large animal models mimicking important aspects of human anatomy, physiology, and pathology more closely than mouse models are urgently needed for studies evaluating the safety and efficacy of cell therapies. The dog is an excellent model for studying human diseases, and the availability of canine ESCs would open new possibilities for this model in biomedical research. In addition, canine ESCs could be useful for the development of cell-based approaches for the treatment of dogs. Here, we discuss the features of recently reported canine embryo-derived cells and their potential applications in basic and translational biomedical research.  相似文献   

9.
Stem cells are essential for development and tissue maintenance and display molecular markers and functions distinct from those of differentiated cell types in a given tissue. Malignant cells that exhibit stem cell-like activities have been detected in many types of cancers and have been implicated in cancer recurrence and drug resistance. Normal stem cells and cancer stem cells have striking commonalities, including shared cell surface markers and signal transduction pathways responsible for regulating quiescence vs. proliferation, self-renewal, pluripotency and differentiation. As the search continues for markers that distinguish between stem cells, progenitor cells and cancer stem cells, growing evidence suggests that a unique chromatin-associated protein called DEK may confer stem cell-like qualities. Here, we briefly describe current knowledge regarding stem and progenitor cells. We then focus on new findings that implicate DEK as a regulator of stem and progenitor cell qualities, potentially through its unusual functions in the regulation of local or global chromatin organization.  相似文献   

10.
Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseasesthat defy doctors and researchers around the world. Stem cells can be divided into three main groups:(1) embryonic stem cells;(2) fetal stem cells; and(3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.  相似文献   

11.
Stem cells are of global excitement for various diseases including heart diseases. It is worth to understand the mechanism or role of stem cells in the treatment of heart failure. Bone marrow derived stem cells are commonly practiced with an aim to improve the function of the heart. The majority of studies have been conducted with acute myocardial infarction and a few has been investigated with the use of stem cells for treating chronic or dilated cardiomyopathy. Heterogeneity in the treated group using stem cells has greatly emerged. Ever increasing demand for any alternative made is of at most priority for cardiomyopathy. Stem cells are of top priority with the current impact that has generated among physicians. However, meticulous selection of proper source is required since redundancy is clearly evident with the present survey. This review focuses on the methods adopted using stem cells for heart diseases and outcomes that are generated so far with an idea to determine the best therapeutic possibility in order to fulfill the present demand.  相似文献   

12.
13.
果蝇干细胞研究进展   总被引:1,自引:0,他引:1  
本文主要介绍了果蝇五种干细胞,包括生殖干细胞、神经干细胞、造血干细胞、小肠干细胞、肾干细胞及其微环境(niche)的组成成份;简述了五种干细胞系统对应的分子标记;最后重点介绍了调控每种干细胞系统的信号通路。  相似文献   

14.
15.
Research on the discovery and implementation of valid cancer biomarkers is one of the most challenging fields in oncology and oncoproteomics in particular. Moreover, it is generally accepted that an evaluation of cancer biomarkers from the blood could significantly enable biomarker assessments by providing a relatively non-invasive source of representative tumour material. In this regard, circulating tumour cells (CTCs) isolated from the blood of metastatic cancer patients have significant promise. It has been demonstrated that localised and metastatic cancers may give rise to CTCs, which are detectable in the bloodstream. Despite technical difficulties, recent studies have highlighted the prognostic significance of the presence and number of CTCs in the blood. Future studies are necessary not only to detect CTCs but also to characterise them. Furthermore, another pathogenically significant type of cancer cells, known as cancer stem cells (CSCs) or more recently termed circulating tumour stem cells (CTSCs), appears to have a significant role as a subpopulation of CTCs.  相似文献   

16.
Conventional culture systems are often limited in their ability to regulate the growth and differentiation of pluripotent stem cells. Microfluidic systems can overcome some of these limitations by providing defined growth conditions with user-controlled spatiotemporal cues. Microfluidic systems allow researchers to modulate pluripotent stem cell renewal and differentiation through biochemical and mechanical stimulation, as well as through microscale patterning and organization of cells and extracellular materials. Essentially, microfluidic tools are reducing the gap between in vitro cell culture environments and the complex and dynamic features of the in vivo stem cell niche. These microfluidic culture systems can also be integrated with microanalytical tools to assess the health and molecular status of pluripotent stem cells. The ability to control biochemical and mechanical input to cells, as well as rapidly and efficiently analyze the biological output from cells, will further our understanding of stem cells and help translate them into clinical use. This review provides a comprehensive insignt into the implications of microfluidics on pluripotent stem cell research.  相似文献   

17.
With technological advances in basic research,the intricate mechanism of secondary delayed spinal cord injury(SCI)continues to unravel at a rapid pace.However,despite our deeper understanding of the molecular changes occurring after initial insult to the spinal cord,the cure for paralysis remains elusive.Current treatment of SCI is limited to early administration of high dose steroids to mitigate the harmful effect of cord edema that occurs after SCI and to reduce the cascade of secondary delayed SCI.R ecent evident-based clinical studies have cast doubt on the clinical benefit of steroids in SCI and intense focus on stem cell-based therapy has yielded some encouraging results.An array of mesenchymal stem cells(MSCs)from various sources with novel and promising strategies are being developed to improve function after SCI.In this review,we briefly discuss the pathophysiology of spinal cord injuries and characteristics and the potential sources of MSCs that can be used in the treatment of SCI.We will discuss the progress of MSCs application in research,focusing on the neuroprotective properties of MSCs.Finally,we will discuss the results from preclinical and clinical trials involving stem cell-based therapy in SCI.  相似文献   

18.
Adipose-derived stem cells (ASCs) are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue. Isolated ASCs are typically expanded in monolayer on standard tissue culture plastic with a basal medium containing 10% fetal bovine serum. However, recent data suggest that altering the monolayer expansion conditions by using suspension culture plastic, adding growth factors to the medium, or adjusting the seeding density may affect the self-renewal rate, multipotency, and lineage-specific differentiation potential of the ASCs. We hypothesized that variation in any of these expansion conditions would influence the chondrogenic potential of ASCs. ASCs were isolated from human liposuction waste tissue and expanded through two passages with different tissue culture plastic, feed medium, and cell seeding densities. Once expanded, the cells were cast in an agarose gel and subjected to identical chondrogenic culture conditions for 7 days, at which point cell viability, radiolabel incorporation, and gene expression were measured. High rates of matrix synthesis upon chondrogenic induction were mostly associated with smaller cells, as indicated by cell width and area on tissue culture plastic, and it appears that expansion in a growth factor supplemented medium is important in maintaining this morphology. All end-point measures were highly dependent on the specific monolayer culture conditions. These results support the hypothesis that monolayer culture conditions may "prime" the cells or predispose them towards a specific phenotype and thus underscore the importance of early culture conditions in determining the growth and differentiation potential of ASCs.  相似文献   

19.
成人中枢神经系统存在着一定量的神经干细胞,其具有两大关键能力;自我更新和多向分化潜能。缺血性脑卒中是一种由于由脑血流的缺失或减少引起的脑动脉闭塞,进而导致脑组织梗死的脑血管疾病。虽然对于脑损伤的药物治疗已经取得了一定的成果,但目前以干细胞为基础的治疗方法仍成为了研究热点。无论是内源性神经干细胞还是外源性神经干细胞移植均可在脑损伤后向远端损伤区迁移并分化成新的神经细胞,从而在中枢神经系统疾病尤其是脑梗死后进行组织修复和功能恢复。因此在这篇综述中,我们主要探讨不同类型的干细胞对脑梗死介导的脑损伤的应用潜能,对比不同类型干细胞对缺血性脑卒中的治疗优缺点。  相似文献   

20.
Stem cell behavior is tightly regulated by spatiotemporal signaling from the niche, which is a four-dimensional microenvironment that can instruct stem cells to remain quiescent, self-renew, proliferate, or differentiate. In this review, we discuss recent advances in understanding the signaling cues provided by the stem cell niche in two contrasting adult tissues, the rapidly cycling intestinal epithelium and the slowly renewing skeletal muscle. Drawing comparisons between these two systems, we discuss the effects of niche-derived growth factors and signaling molecules, metabolic cues, the extracellular matrix and biomechanical cues, and immune signals on stem cells. We also discuss the influence of the niche in defining stem cell identity and function in both normal and pathophysiologic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号