首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
BRAG2 is a guanine nucleotide exchange factor for the GTPase Arf6 that cycles between the cytoplasm and nucleus in a CRM1/exportin1-dependent manner. Despite its presence in the nucleus, nuclear functions have not previously been described. Here, we show that depletion of endogenous BRAG2 by RNAi leads to an increased number of Cajal bodies (CBs), and altered structure of nucleoli, as indicated by less focal fibrillarin staining. This result was surprising given that nuclear BRAG2 is diffusely distributed throughout the nucleoplasm and is not concentrated within nucleoli at steady state. However, we found that ectopic expression of the nuclear GTPase PIKE/AGAP2 causes both BRAG2 and the CB marker coilin to accumulate in nucleoli. Neither the GTPase activity of PIKE nor the nucleotide exchange activity of BRAG2 is required for this nucleolar concentration. Increased levels of exogenous BRAG2 in nucleoli result in a redistribution of fibrillarin to the nucleolar periphery, supporting a role for BRAG2 in regulating nucleolar architecture. These observations suggest that, in addition to its role in endocytic regulation at the plasma membrane, BRAG2 also functions within the nucleus.  相似文献   

4.
The plant immune receptor FLAGELLIN SENSING 2 (FLS2) is present at the plasma membrane and is internalized following activation of its ligand flagellin (flg22). We show that ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT)-I subunits play roles in FLS2 endocytosis in Arabidopsis. VPS37-1 co-localizes with FLS2 at endosomes and immunoprecipitates with the receptor upon flg22 elicitation. Vps37-1 mutants are reduced in flg22-induced FLS2 endosomes but not in endosomes labeled by Rab5 GTPases suggesting a defect in FLS2 trafficking rather than formation of endosomes. FLS2 localizes to the lumen of multivesicular bodies, but this is altered in vps37-1 mutants indicating compromised endosomal sorting of FLS2 by ESCRT-I loss-of-function. VPS37-1 and VPS28-2 are critical for immunity against bacterial infection through a role in stomatal closure. Our findings identify that VPS37-1, and likewise VPS28-2, regulate late FLS2 endosomal sorting and reveals that ESCRT-I is critical for flg22-activated stomatal defenses involved in plant immunity.  相似文献   

5.
6.
Intracellular trafficking of plant receptor kinases (PRKs) is a key step in regulation of cellular signaling. Our current knowledge in this field is based on systems that address signaling pathways affecting the whole cell. There are, however, signaling phenomena that add a further layer of complexity. In the Brassica self-incompatibility response, a single cell can adequately respond to two opposite stimuli: accepting cross-pollen and rejecting self-pollen simultaneously. To understand how PRK signaling can influence the coexistence of two seemingly exclusive states of the cell, we investigated the subcellular localization and internalization of the S-receptor kinase (SRK) involved in the self-incompatibility response of Brassica oleracea. Here, we describe the unusual subcellular distribution of SRK3, which localizes predominantly to intracellular compartments and to a much lesser extent to the plasma membrane. Using an anti-SRK antibody that fully substitutes for the natural ligand, we demonstrate that the interaction with the receptor takes place at the plasma membrane and is followed by SRK internalization in endosomes that are enriched in the SRK negative regulator Thioredoxin-h-like1.  相似文献   

7.
In response to various stress signals, which introduce infidelity into the processes of cell growth and division, p53 initiates cell-cycle arrest, apoptosis, or senescence to maintain fidelity throughout the cell cycle. Although these functions are traditionally thought of as the major functions of the p53 protein for tumor suppression, recent studies have revealed some additional novel functions of the p53 pathway. These include the down-regulation of two central cell-growth pathways, the IGF/AKT-1 and mTOR pathways, and the up-regulation of the activities of the endosomal compartment. The IGF-1/AKT and mTOR pathways are two evolutionarily conserved pathways that play critical roles in regulation of cell proliferation, survival, and energy metabolism. In response to stress, p53 transcribes a group of critical negative regulators in these two pathways, including IGF-BP3, PTEN, TSC2, AMPK β1, and Sestrin1/2, which leads to the reduction in the activities of these two pathways. Furthermore, p53 transcribes several critical genes regulating the endosomal compartment, including TSAP6, Chmp4C, Caveolin-1, and DRAM, and increases exosome secretion, the rate of endosomal removal of growth factor receptors (e.g., EGFR) from cell surface, and enhances autophagy. These activities all function to slow down cell growth and division, conserve and recycle cellular resources, communicate with adjacent cells and dendritic cells of the immune system, and inform other tissues of the stress signals. This coordinated regulation of IGF-1/AKT/mTOR pathways and the endosomal compartment by the p53 pathway integrates the molecular, cellular, and systemic levels of activities and prevents the accumulations of errors in response to stress and restores cellular homeostasis after stress.  相似文献   

8.
Cells sense and respond to the mechanical properties of their microenvironment. We investigated whether these properties affect the ability of cells to assemble a fibrillar fibronectin (FN) matrix. Analysis of matrix assembled by cells grown on FN-coated polyacrylamide gels of varying stiffnesses showed that rigid substrates stimulate FN matrix assembly and activation of focal adhesion kinase (FAK) compared with the level of assembly and FAK signaling on softer substrates. Stimulating integrins with Mn2+ treatment increased FN assembly on softer gels, suggesting that integrin binding is deficient on soft substrates. Guanidine hydrochloride-induced extension of the substrate-bound FN rescued assembly on soft substrates to a degree similar to that of Mn2+ treatment and increased activation of FAK along with the initiation of assembly at FN matrix assembly sites. In contrast, increasing actin-mediated cell contractility did not rescue FN matrix assembly on soft substrates. Thus, rigidity-dependent FN matrix assembly is determined by extracellular events, namely the engagement of FN by cells and the induction of FN conformational changes. Extensibility of FN in response to substrate stiffness may serve as a mechanosensing mechanism whereby cells use pericellular FN to probe the stiffness of their environment.  相似文献   

9.
The E3 ubiquitin ligase c-Cbl ubiquitinates the G protein-coupled receptor protease-activated receptor 2 (PAR2), which is required for postendocytic sorting of activated receptors to lysosomes, where degradation terminates signaling. The mechanisms of PAR2 deubiquitination and its importance in trafficking and signaling of endocytosed PAR2 are unknown. We report that receptor deubiquitination occurs between early endosomes and lysosomes and involves the endosomal deubiquitinating proteases AMSH and UBPY. Expression of the catalytically inactive mutants, AMSH(D348A) and UBPY(C786S), caused an increase in PAR2 ubiquitination and trapped the receptor in early endosomes, thereby preventing lysosomal trafficking and degradation. Small interfering RNA knockdown of AMSH or UBPY also impaired deubiquitination, lysosomal trafficking, and degradation of PAR2. Trapping PAR2 in endosomes through expression of AMSH(D348A) or UBPY(C786S) did not prolong the association of PAR2 with β-arrestin2 or the duration of PAR2-induced ERK2 activation. Thus, AMSH and UBPY are essential for trafficking and down-regulation of PAR2 but not for regulating PAR2 dissociation from β-arrestin2 or PAR2-mediated ERK2 activation.Ubiquitination of certain G protein-coupled receptors (GPCRs)3 is an essential signal for their postendocytic trafficking to lysosomes, which prevents uncontrolled signaling during chronic stimulation. Agonists stimulate ubiquitination of the β2-adrenergic receptor (β2AR), chemokine (CXC motif) receptor 4, and protease-activated receptor 2 (PAR2), and the E3 ubiquitin ligases that mediate ubiquitination of these GPCRs and associated proteins, such as β-arrestins, have been identified (13). Although ubiquitination of these receptors is not required for endocytosis, ubiquitin-resistant mutant receptors show diminished postendocytic sorting to lysosomes and impaired down-regulation. However, despite of the reversible nature of this post-translational modification, little is known about the role of deubiquitinating proteases (DUBs) in the postendocytic trafficking and signaling of GPCRs.Our understanding of the role of DUBs in postendocytic receptor trafficking mostly derives from studies of receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR). Two endosomal DUBs, AMSH (associated molecule with the Src homology 3 domain of STAM (signal-transducing adapter molecule)) and UBPY (ubiquitin-specific protease Y) (also known as USP8), regulate deubiquitination and postendocytic trafficking of EGFR (4). AMSH belongs to the JAMM (JAB1/MPN/Mov34) family of metalloproteases and shows specificity for Lys63- over Lys48-linked ubiquitin chains (5, 6). UBPY is a cysteine protease of the ubiquitin-specific protease (USP) family and does not discriminate between Lys48- and Lys63-linked ubiquitin (7, 8). Activated EGFR recruits the E3 ligase c-Cbl, which ubiquitinates the receptor (9). Ubiquitinated EGFR then interacts with the Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate)-STAM complex in early endosomes (10). Hrs-STAM forms part of the ESCRT (endosomal sorting complex required for transport)-I, -II, -III complex that sorts ubiquitinated receptors in multivesicular bodies (MVBs) to intralumenal vesicles that eventually fuse with lysosomes, where degradation occurs (11). Before receptors are incorporated into the intralumenal vesicles, they are deubiquitinated, which serves to maintain levels of free ubiquitin (11). AMSH and UBPY interact directly with STAM through a common binding site within its Src homology 3 domain (1214). The balance of EGFR ubiquitination by c-Cbl and deubiquitination by AMSH and UBPY controls the postendocytic trafficking and down-regulation of the EGFR. c-Cbl promotes lysosomal degradation of the EGFR (9), AMSH opposes c-Cbl action and promotes EGFR recycling (5), and UBPY is required for lysosomal sorting and degradation of EGFR (8, 1517). The role of AMSH and UBPY in regulating deubiquitination, trafficking, and signaling of GPCRs in endosomes is largely unknown. A recent study has shown, however, that AMSH and UBPY regulate the down-regulation of the δ-opioid receptor (DOR), a GPCR that is ubiquitinated and degraded following activation (18). Expression of catalytically inactive mutants of AMSH or UBPY or knockdown of AMSH or UBPY levels using siRNA inhibits down-regulation of DOR. Interestingly, the roles of AMSH and UBPY in DOR down-regulation appear to be nonredundant, since depletion of either DUB produced comparable effects, and simultaneous depletion of both DUBs did not have additional consequences (18). Different DUBs, USP20 and -33, have been recently shown to reverse agonist-induced ubiquitination of the β2AR (19).We examined the roles of AMSH and UBPY in the ubiquitination, postendocytic trafficking, and lysosomal degradation of PAR2. We also determined whether AMSH and UBPY regulate PAR2 association with β-arrestins in endosomes and control β-arrestin-mediated extracellular signal-regulated kinase (ERK) activation. PAR2 is a receptor for multiple serine proteases that are generated during injury and inflammation (20). Activated PAR2 promotes inflammation and pain, and PAR2 contributes to inflammatory diseases of the airway, joints, and intestine. PAR2 levels are elevated during inflammation, due to increased mRNA expression or perhaps decreased receptor degradation, which amplifies the proinflammatory actions of proteases (21). Given the irreversible nature of proteolytic activation, and since the internalized receptor probably signals by the β-arrestin-dependent recruitment of mitogen-activated protein kinase (MAPK) to endosomes (22), termination of PAR2 signaling requires receptor degradation in lysosomes, which in turn is ubiquitination-dependent (3, 23). It is therefore important to understand mechanisms of PAR2 ubiquitination and lysosomal targeting and also how these processes can be reversed. We have reported that activated PAR2 is monoubiquitinated at multiple sites by the E3 ligase c-Cbl and targeted to lysosomes by an Hrs-dependent pathway (3, 24). Nothing is known about the mechanism and function of PAR2 deubiquitination. Herein, we examined the role of AMSH and UBPY in regulating the deubiquitination, lysosomal trafficking, and degradation of PAR2, the interaction of PAR2 with β-arrestin2, and β-arrestin-mediated ERK2 activation. We demonstrate that endosomal DUBs are key regulators of GPCR down-regulation.  相似文献   

10.
The chemokine receptor CXCR4, a G protein-coupled receptor, is targeted for lysosomal degradation via a ubiquitin-dependent mechanism that involves the endosomal sorting complex required for transport (ESCRT) machinery. We have reported recently that arrestin-2 also targets CXCR4 for lysosomal degradation; however, the molecular mechanisms by which this occurs remain poorly understood. Here, we show that arrestin-2 interacts with ESCRT-0, a protein complex that recognizes and sorts ubiquitinated cargo into the degradative pathway. Signal-transducing adaptor molecule (STAM)-1, but not related STAM-2, interacts directly with arrestin-2 and colocalizes with CXCR4 on early endosomal antigen 1-positive early endosomes. Depletion of STAM-1 by RNA interference and disruption of the arrestin-2/STAM-1 interaction accelerates agonist promoted degradation of CXCR4, suggesting that STAM-1 via its interaction with arrestin-2 negatively regulates CXCR4 endosomal sorting. Interestingly, disruption of this interaction blocks agonist promoted ubiquitination of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) but not CXCR4 and STAM-1 ubiquitination. Our data suggest a mechanism whereby arrestin-2 via its interaction with STAM-1 modulates CXCR4 sorting by regulating the ubiquitination status of HRS.  相似文献   

11.
《Biophysical journal》2020,118(5):1109-1118
Human glucokinase (GCK) is the prototypic example of an emerging class of proteins with allosteric-like behavior that originates from intrinsic polypeptide dynamics. High-resolution NMR investigations of GCK have elucidated millisecond-timescale dynamics underlying allostery. In contrast, faster motions have remained underexplored, hindering the development of a comprehensive model of cooperativity. Here, we map nanosecond-timescale dynamics and structural heterogeneity in GCK using a combination of unnatural amino acid incorporation, time-resolved fluorescence, and 19F nuclear magnetic resonance spectroscopy. We find that a probe inserted within the enzyme’s intrinsically disordered loop samples multiple conformations in the unliganded state. Glucose binding and disease-associated mutations that suppress cooperativity alter the number and/or relative population of these states. Together, the nanosecond kinetics characterized here and the millisecond motions known to be essential for cooperativity provide a dynamical framework with which we address the origins of cooperativity and the mechanism of activated, hyperinsulinemia-associated, noncooperative variants.  相似文献   

12.
Endosomal phosphoinositides and human diseases   总被引:1,自引:0,他引:1  
Phosphoinositides (PIs) are lipid second messengers implicated in signal transduction and membrane trafficking. Seven distinct PIs can be synthesized by phosphorylation of the inositol ring of phosphatidylinositol (PtdIns), and their metabolism is accurately regulated by PI kinases and phosphatases. Two of the PIs, PtdIns3 P and PtdIns(3,5) P 2, are present on intracellular endosomal compartments, and several studies suggest that they have a role in membrane remodeling and trafficking. We refer to them as 'endosomal PIs'. An increasing number of human genetic diseases including myopathy and neuropathies are associated to mutations in enzymes regulating the turnover of these endosomal PIs. The PtdIns3 P and PtdIns(3,5) P 2 3-phosphatase myotubularin gene is mutated in X-linked centronuclear myopathy, whereas its homologs MTMR2 and MTMR13 and the PtdIns(3,5) P 2 5-phosphatase SAC3/FIG4 are implicated in Charcot–Marie–Tooth peripheral neuropathies. Mutations in the gene encoding the PtdIns3 P 5-kinase PIP5K3/PIKfyve have been found in patients affected with François–Neetens fleck corneal dystrophy. This review presents the roles of the endosomal PIs and their regulators and proposes defects of membrane remodeling as a common pathological mechanism for the corresponding diseases.  相似文献   

13.
Extracellular leucine-rich repeat (LRR) receptor-like proteins (RLPs) represent a unique class of cell-surface receptors, as they lack a functional cytoplasmic domain. Our knowledge of how RLPs that do not contain a kinase or Toll domain function is very limited. The tomato RLP receptor LeEix2 signals to induce defense responses mediated by the fungal protein ethylene-inducing xylanase (EIX). The movement of FYVE-positive endosomes before and after EIX application was examined using spinning disc confocal microscopy. We found that while FYVE-positive endosomes generally observe a random movement pattern, following EIX application a subpopulation of FYVE-positive endosomes follow a directional movement pattern. Further, cellular endosomes travel greater distances at higher speeds following EIX application. Time-course experiments conducted with specific inhibitors demonstrate the involvement of endosomal signaling in EIX-triggered defense responses. Abolishing the existence of endosomes or the endocytic event prevented EIX-induced signaling. Endocytosis/endosome inhibitors, such as Dynasore or 1-butanol, inhibit EIX-induced signaling. Moreover, treatment with Endosidin1, which inhibits an early step in plasma membrane/endosome trafficking, enhances the induction of defense responses by EIX. Our data indicate a distinct endosomal signaling mechanism for induction of defense responses in this RLP system.  相似文献   

14.
It is widely recognized that after endocytosis, internalized cargo is delivered to endosomes that act as sorting stations. The limiting membrane of endosomes contain specialized subregions, or microdomains, that represent distinct functions of the endosome, including regions competing for cargo capture leading to degradation or recycling. Great progress has been made in defining the endosomal protein coats that sort cargo in these domains, including Retromer that recycles transmembrane cargo, and ESCRT (endosomal sorting complex required for transport) that degrades transmembrane cargo. In this review, we discuss recent work that is beginning to unravel how such coat complexes contribute to the creation and maintenance of endosomal microdomains. We highlight data that indicates that adjacent microdomains do not act independently but rather interact to cross-regulate. We posit that these interactions provide an agile means for the cell to adjust sorting in response to extracellular signals and intracellular metabolic cues.  相似文献   

15.
16.
17.
The three endosomal sorting complexes required for transport (ESCRTs) are integral to the degradation of endocytosed membrane proteins and multivesicular body (MVB) biogenesis. Here, we review evidence that ESCRTs have evolved as a specialized machinery for the degradative sorting of ubiquitinated membrane proteins and we highlight recent studies that have shed light on the mechanisms by which these complexes mediate protein sorting, MVB biogenesis, tumour suppression and viral budding. We also discuss evidence that some ESCRT subunits have evolved additional functions that are unrelated to membrane trafficking.  相似文献   

18.
P2Y12 receptor internalization and recycling play an essential role in ADP‐induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild‐type (WT) P2Y12 recycling and investigated P2Y12‐P341A receptor traffic. Treatment with ADP resulted in delayed Rab5‐dependent internalization of P341A when compared with WT P2Y12. While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7‐positive endosomes with considerable agonist‐dependent accumulation in the trans‐Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT‐P2Y12. Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12‐P341A‐expressing patient.  相似文献   

19.
To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.  相似文献   

20.
 In eukaryotic cell membranes, phospholipids are asymmetrically distributed between the two leaflets of the lipid bilayer. For example, the extracellular leaflet of the plasma membrane (PM) is enriched with phosphatidylcholine and sphingomyelin, while the cytosolic leaflet of the PM is enriched with phosphatidylserine (PS) and phosphatidylethanolamine. The asymmetric distribution of PS in the PM is crucial for cell life, since PS in the extracellular leaflet of the PM is recognized as an “eat-me” signal by phagocytes. Inside the cells, a high PS concentration in the cytosolic leaflet of the PM is essential to facilitate various cellular events through the recruitment of signaling molecules such as protein kinase C and Akt.The asymmetric distribution of phospholipids is believed to be generated in part by phospholipid translocases, or “flippases.” The proteins responsible for flippase activity are type IV P-type ATPase (P4-ATPases). P-type ATPases are multispan transmembrane pumps that use ATP hydrolysis as an energy source. P-type ATPases undergo autophosphorylation of a conserved aspartate residue during the catalytic cycle, hence the designation of “P”-type. P4-ATPases are unique in that they are phospholipid transporters whereas other types of P-type ATPases are ion transporters.The human genome contains 14 P4-ATPases, and mutations in some P4-ATPases cause inherited genetic diseases. For example, mutations in ATP8B1 are associated with intrahepatic cholestasis and also cause hearing loss. Mutations in ATP8A2 are associated with a severe neurological disorder characterized by cerebellar ataxia, mental retardation, and dysequilibrium syndrome (CAMRQ).1 Despite the accumulating evidence highlighting the physiological importance of P4-ATPases, how dysfunction of P4-ATPases causes diseases is poorly understood.In a recent study, we revealed the cellular function of the P4-ATPase, ATP8A1.2 ATP8A1 localizes at recycling endosomes (REs), an organelle that functions in recycling transport of internalized molecules back to the PM, thus defining the amount of proteins at the PM. PS is most concentrated in REs among intracellular organelles and we roughly estimated that 70 and 30% of PS are localized in the cytosolic and the luminal leaflets of RE membranes, respectively.2 ATP8A1 generates the asymmetric transbilayer distribution of PS at REs. The knockdown of ATP8A1 halted recycling traffic from REs to the PM. At the mechanistic level, we found that EHD1, a dynamin-like membrane fission protein, lost its RE localization upon ATP8A1 knockdown and EHD1 knockdown also blocked recycling traffic. EHD1 bound PS in vitro and lost its membrane localization in cells that are defective in PS synthesis. Thus, we propose that PS flipping by ATP8A1 recruits EHD1 to RE membranes, thereby regulating the recycling traffic from REs to the PM (Fig. 1). Open in a separate windowFigure 1.Model of flippase-related diseases. Under normal conditions, flippases (e.g., ATP8A1 and ATP8A2) translocate PS to the cytosolic leaflet of RE membranes. PS recruits EHD1 to REs, and then EHD1 participates in the fission of RE membranes to generate transport vesicles that contain cell surface receptors. In flippase-dysfunctional situations, PS levels in the cytosolic leaflet of REs would be low. This impairs the PS/EHD1/membrane traffic axis, leading to a lower abundance of cell surface receptors that are critical for responses to extracellular ligands.ATP8A2 is a tissue-specific ATP8A1 paralogue. We found that a CAMRQ-causative mutation of ATP8A2 (I376M) lost its ATPase and flippase activity toward PS. ATP8A2 is not endogenously expressed in COS-1 cells. Interestingly, the phenotype that was caused by the loss of ATP8A1 in COS-1 cells, was restored by the exogenous expression of wild-type ATP8A2, but not I376M mutant ATP8A2. Moreover, cortical neurons prepared from ATP8A2 knockout mice showed lower abundance of transferrin receptors at the PM. Together, these results indicate that ATP8A2 functions in the recycling traffic in neurons, and that CAMRQ may result from the defect in recycling of important neurological receptor proteins from REs to the PM. One possible candidate protein is very low-density lipoprotein receptor (VLDLR). VLDLR is a receptor for reelin, an extracellular protein that guides neuronal migration in the cerebral cortex and cerebellum. VLDLR circulates between the PM and endosomes (possibly REs) by recycling traffic.3 Significantly, mutations in VLDLR gene are also linked to CAMRQ.4,5 Therefore, impaired recycling traffic of VLDLR to the PM in neurons with dysfunctional ATP8A2 (I376M) may cause lower expression of VLDLR at the PM, leading to reduced reelin signaling, abnormal neuronal development, and neurological disorder.dATP8B, a P4-ATPase in Drosophila melanogaster was recently reported to cause an impaired response to cVA pheromone (a sex-specific social cue) and mislocalization of the pheromone receptor in cVA-sensing neurons.6 The impaired response to the pheromone in dATP8B mutant was rescued by expressing bovine ATP8A2. Therefore, from insects to mammals, phospholipid flippases may define the localization of neuronal receptors to the PM.Lastly, our findings may explain the phenotype of ATP8A1 knockout mice.7 ATP8A1 knockout mice are vital but show deficiencies in hippocampus-dependent learning. Hippocampus-dependent learning involves modification of synaptic strength, and one cellular mechanism for tuning synaptic strength is long-term potentiation (LTP). During LTP, REs supply glutamate receptors to the post-synaptic membrane.8 Therefore, we speculate that impaired glutamate receptor traffic from REs to the post-synaptic membranes during LTP may underlie the deficiency in learning in ATP8A1 knockout mice. In agreement with this hypothesis, the dominant-negative form of EHD1 inhibits glutamate receptor traffic during LTP.8Many P4-ATPases are expressed in the Golgi/endosomes and the PM. We expect that they contribute redundantly to the phospholipid asymmetry and membrane traffic through organelles. Simultaneous ablations of P4-ATPases may dissect their roles and will give more insight into flippase-mediated cellular processes and -related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号