首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [35S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The cell-associated 35S-labeled proteoglycans were extracted from the MMC-enriched cell preparation by the addition of detergent and 4 M guanidine HCl and were partially purified by density gradient centrifugation. The isolated proteoglycans were of approximately 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. Analysis by high-performance liquid chromatography of chondroitinase ABC-treated 35S-labeled proteoglycans from these rat MMC revealed that the chondroitin sulfate chains consisted predominantly of disaccharides with the disulfated di-B structure (IdUA-2SO4----GalNAc-4SO4) and disaccharides with the monosulfated A structure (G1cUA----GalNAc-4SO4). The ratio of disaccharides of the di-B to A structure ranged from 0.4 to 1.6 in three experiments. Small amounts of chondroitin sulfate E disaccharides (GlcUA----GalNAc-4,6-diSO4) were also detected in the chondroitinase ABC digests of the purified rat MMC proteoglycans, but no nitrous acid-susceptible heparin/heparan sulfate glycosaminoglycans were detected. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain such a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched population of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leukemia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans as well as rat serosal mast cell heparin proteoglycans are all highly sulfated, protease-resistant proteoglycans.  相似文献   

2.
Proteoglycans were extracted from nuclease-digested sonicates of 10(9) rat basophilic leukemia (RBL-1) cells by the addition of 0.1% Zwittergent 3-12 and 4 M guanidine hydrochloride and were purified by sequential CsCl density gradient ultracentrifugation, DE52 ion exchange chromatography, and Sepharose CL-6B gel filtration chromatography under dissociative conditions. Between 0.3 and 0.8 mg of purified proteoglycan was obtained from approximately 1 g initial dry weight of cells with a purification of 200-800-fold. The purified proteoglycans had a hydrodynamic size range of Mr 100,000-150,000 and were resistant to degradation by a molar excess of trypsin, alpha-chymotrypsin, Pronase, papain, chymopapain, collagenase, and elastase. Amino acid analysis of the peptide core revealed a preponderance of Gly (35.4%), Ser (22.5%), and Ala (9.5%). Approximately 70% of the glycosaminoglycan side chains of RBL-1 proteoglycans were digested by chondroitinase ABC and 27% were hydrolyzed by treatment with nitrous acid. Sephadex G-200 chromatography of glycosaminoglycans liberated from the intact molecule by beta-elimination demonstrated that both the nitrous acid-resistant (chondroitin sulfate) and the chondroitinase ABC-resistant (heparin/heparan sulfate) glycosaminoglycans were of approximately Mr 12,000. Analysis of the chondroitin sulfate disaccharides in different preparations by amino-cyano high performance liquid chromatography revealed that 9-29% were the unusual disulfated disaccharide chondroitin sulfate di-B (IdUA-2-SO4----GalNAc-4-SO4); the remainder were the monosulfated disaccharide GlcUA----GalNAc-4-SO4. Subpopulations of proteoglycans in one preparation were separated by anion exchange high performance liquid chromatography and were found to contain chondroitin sulfate glycosaminoglycans whose disulfated disaccharides ranged from 9-49%. However, no segregation of subpopulations without both chondroitin sulfate di-B and heparin/heparan sulfate glycosaminoglycans was achieved, suggesting that RBL-1 proteoglycans might be hybrids containing both classes of glycosaminoglycans. Sepharose CL-6B chromatography of RBL-1 proteoglycans digested with chondroitinase ABC revealed that less than 7% of the molecules in the digest chromatographed with the hydrodynamic size of undigested proteoglycans, suggesting that at most 7% of the proteoglycans lack chondroitin sulfate glycosaminoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A perineuronal net (PNN) is a layer of lattice-like matrix which enwraps the surface of the soma and dendrites, and in some cases the axon initial segments, in sub-populations of neurons in the central nervous system (CNS). First reported by Camillo Golgi more than a century ago, the molecular structure and the potential role of this matrix have only been unraveled in the last few decades. PNNs are mainly composed of hyaluronan, chondroitin sulfate proteoglycans, link proteins, and tenascin R. The interactions between these molecules allow the formation of a stable pericellular complex surrounding synapses on the neuronal surface. PNNs appear late in development co-incident with the closure of critical periods for plasticity. They play a direct role in the control of CNS plasticity, and their removal is one way in which plasticity can be re-activated in the adult CNS. In this review, we examine the molecular components and formation of PNNs, their role in maturation and synaptic plasticity after CNS injury, and the possible mechanisms of PNN action.  相似文献   

4.
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.  相似文献   

5.
The heparin-binding neurotrophic factor midkine (MK) has been proposed to mediate neuronal cell adhesion and neurite outgrowth promotion by interacting with cell-surface heparan sulfate. We have observed that over-sulfated chondroitin sulfate (CS) D and CS-E show neurite outgrowth-promoting activity in embryonic day (E) 18 rat hippocampal neurons (Nadanaka, S., Clement, A., Masayama, K., Faissner, A., and Sugahara, K. (1998) J. Biol. Chem. 273, 3296-3307). In the present study, various CS isoforms were examined for their ability to inhibit the MK-mediated cell adhesion of cortical neuronal cells in comparison with heparin from porcine intestine and heparan sulfate from bovine kidney. E17-18 rat cortical neuronal cells were cultured on plates coated with recombinant MK in a grid pattern. The cells attached to and extended their neurites along the MK substratum. Cell adhesion was inhibited by squid cartilage over-sulfated CS-E as well as by heparin, but not by heparan sulfate or other CS isoforms. Direct interactions of MK with various glycosaminoglycans were then evaluated using surface plasmon resonance, showing that CS-E bound MK as strongly as heparin, followed by other over-sulfated CS isoforms, CS-H and CS-K. Furthermore, E18 rat brain extracts showed an E disaccharide unit, GlcUAbeta1-3GalNAc(4,6-O-disulfate). These findings indicate that CS chains containing the E unit as well as heparin-like glycosaminoglycans may be involved in the expression and/or modulation of the multiple neuroregulatory functions of MK such as neuronal adhesion and migration and promotion of neurite outgrowth.  相似文献   

6.
The predominant [3H]diisopropyl fluorophosphate (DFP)-binding proteins that are released from the secretory granules of activated mouse bone marrow-derived mast cells (BMMC) are demonstrated to have an isoelectric point of approximately 9.1 and to be complexed to proteoglycans. Upon Sepharose CL-2B chromatography of the supernatants of calcium ionophore-activated BMMC, 67-78% of the total exocytosed [3H]DFP-binding proteins co-eluted in the excluded volume of the column as a greater than 1 X 10(7) Mr complex bound to 4-7% of the total exocytosed proteoglycans. The remainder of the exocytosed proteoglycans, which filtered in the included volume of the gel filtration column with a Kav of 0.66, contained chondroitin sulfate E glycosaminoglycans. After dissociation of the large Mr complexes of [3H]DFP-binding proteins-proteoglycans with 5 M NaCl and removal of the proteins via phenyl-Sepharose chromatography, the proteoglycans filtered from the Sepharose CL-2B column as a single peak with a Kav of 0.66. The susceptibility of 24-59% and 36-76% of the glycosaminoglycans in the large Mr complex to degradation by nitrous acid and chondroitinase ABC, respectively, indicated the presence of proteoglycans that contained heparin and chondroitin sulfate glycosaminoglycans. Disaccharide analysis revealed that the chondroitin sulfate in the high Mr complex was chondroitin sulfate E. Following chondroitinase ABC treatment of the large Mr complex, the residual heparin proteoglycans filtered on Sepharose CL-4B under dissociative conditions with the same Kav as the original, untreated proteoglycans. Thus, the protein-proteoglycan complexes that are exocytosed from activated mouse BMMC contain approximately equal amounts of proteoglycans of comparable size that bear either predominantly heparin or predominantly chondroitin sulfate E glycosaminoglycans. The demonstration of these secreted complexes indicates that the intragranular protease-resistant heparin and chondroitin sulfate E proteoglycans in the T cell factor-dependent BMMC bind serine proteases throughout the activation-secretion response.  相似文献   

7.
Small leucine-rich proteoglycans, such as biglycan, and their side chain sulfated glycosaminoglycans (GAGs), have been suggested to be involved in bone formation and mineralization processes. The present study was designed to investigate whether chondroitin sulfate (CS), one of the GAG, and its oversulfated structures coupled with bone morphogenetic protein-4 (BMP-4) alter the differentiation and subsequent mineralization of MC3T3-E1 osteoblastic cells. CS-E, one of the oversulfated CS structure, enhanced cell growth, alkaline phosphatase (ALP) activity, collagen deposition, and mineralization whereas heparin enhanced only ALP activity and mineralization. As well as CS-E, CS-H, and CPS also enhanced the mineralization of the cells. CS-E enhanced the mineralization of the cells by interacting with protein in the conditioned medium. CS-E induced mineralization was significantly inhibited by an antibody against BMP-4. The addition of exogenous BMP-4 further increased the capacity of CS-E to enhance mineralization. Fluorescence correlation spectroscopy method using fluoresceinamine-labeled GAG revealed that the oversulfated GAGs have a high affinity for BMP-4. The disaccharide analysis of the cells indicated that MC3T3-E1 cells are capable of producing oversulfated structures of CS by themselves. The lack of CS from the cells after chondroitinase treatment resulted in the inhibition of mineralization. These results in the present study indicate that oversulfated CS, which possesses 4,6-disulfates in N-acetyl-galactosamine, binds to BMP-4 and promotes osteoblast differentiation and subsequent mineralization.  相似文献   

8.
Human eosinophils were cultured for up to 7 days in enriched medium in the absence or presence of recombinant human interleukin (IL) 3, mouse IL 5, or recombinant human granulocyte/macrophage colony stimulating factor (GM-CSF) and then were radiolabeled with [35S]sulfate to characterize their cell-associated proteoglycans. Freshly isolated eosinophils that were not exposed to any of these cytokines synthesized Mr approximately 80,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 80,000 glycosaminoglycans. RNA blot analysis of total eosinophil RNA, probed with a cDNA that encodes a proteoglycan peptide core of the promyelocytic leukemia HL-60 cell, revealed that the mRNA which encodes the analogous molecule in eosinophils was approximately 1.3 kilobases, like that in HL-60 cells. When eosinophils were cultured for 1 day or longer in the presence of 10 pM IL 3, 1 pM IL 5, or 10 pM GM-CSF, the rates of [35S]sulfate incorporation were increased approximately 2-fold, and the cells synthesized Mr approximately 300,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 30,000 35S-labeled glycosaminoglycans. Approximately 93% of the 35S-labeled glycosaminoglycans bound to the proteoglycans synthesized by noncytokine- and cytokine-treated eosinophils were susceptible to degradation by chondroitinase ABC. As assessed by high performance liquid chromatography, 6-16% of these chondroitinase ABC-generated 35S-labeled disaccharides were disulfated disaccharides derived from chondroitin sulfate E; the remainder were monosulfated disaccharides derived from chondroitin sulfate A. Utilizing GM-CSF as a model of the cytokines, it was demonstrated that the GM-CSF-treated cells synthesized larger glycosaminoglycans onto beta-D-xyloside than the noncytokine-treated cells. Thus, IL 3, IL 5, and GM-CSF induce human eosinophils to augment proteoglycan biosynthesis by increasing the size of the newly synthesized proteoglycans and their individual chondroitin sulfate chains.  相似文献   

9.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

10.
In dopaminergic neurons, chondroitin sulfate (CS) proteoglycans play important roles in neuronal development and regeneration. However, due to the complexity and heterogeneity of CS, the precise structure of CS with biological activity and the molecular mechanisms underlying its influence on dopaminergic neurons are poorly understood. In this study, we investigated the ability of synthetic CS oligosaccharides and natural polysaccharides to promote the neurite outgrowth of mesencephalic dopaminergic neurons and the signaling pathways activated by CS. CS-E polysaccharide, but not CS-A, -C or -D polysaccharide, facilitated the neurite outgrowth of dopaminergic neurons at CS concentrations within the physiological range. The stimulatory effect of CS-E polysaccharide on neurite outgrowth was completely abolished by its digestion into disaccharide units with chondroitinase ABC. Similarly to CS-E polysaccharide, a synthetic tetrasaccharide displaying only the CS-E sulfation motif stimulated the neurite outgrowth of dopaminergic neurons, whereas a CS-E disaccharide or unsulfated tetrasaccharide had no effect. Analysis of the molecular mechanisms revealed that the action of the CS-E tetrasaccharide was mediated through midkine-pleiotrophin/protein tyrosine phosphatase zeta and brain-derived neurotrophic factor/tyrosine kinase B receptor pathways, followed by activation of the two intracellular phospholipase C (PLC) signaling cascades: PLC/protein kinase C and PLC/inositol 1,4,5-triphosphate/inositol 1,4,5-triphosphate receptor signaling leading to intracellular Ca(2+) concentration-dependent activation of Ca(2+)/calmodulin-dependent kinase II and calcineurin. These results indicate that a specific sulfation motif, in particular the CS-E tetrasaccharide unit, represents a key structural determinant for activation of midkine, pleiotrophin and brain-derived neurotrophic factor-mediated signaling, and is required for the neuritogenic activity of CS in dopaminergic neurons.  相似文献   

11.
Basophilic leukocytes from two patients with myelogenous leukemia were enriched to a purity of 10 to 45% by density gradient centrifugation. Ultrastructurally, these basophilic leukocytes contained segmented nuclei and granules with reticular patterns resembling those of normal basophils, and other granules with scroll and grating patterns resembling those of normal connective tissue mast cells. The 35S-labeled macromolecules isolated from these cells were approximately 140,000 m.w. Pronase-resistant proteoglycans bearing approximately 15,000 m.w. glycosaminoglycans. On incubation with chondroitinase ABC, nitrous acid, and heparinase, the 35S-labeled proteoglycans were degraded 50 to 84%, 16 to 43%, and 8 to 37%, respectively, indicating the presence of both chondroitin sulfate and heparin. As assessed by high performance liquid chromatography, the 35S-labeled chondroitin sulfate disaccharides liberated by chondroitinase ABC treatment were approximately 95% monosulfated chondroitin sulfate A and approximately 5% disulfated chondroitin sulfate E. The presence of heparin was confirmed by two-dimensional cellulose acetate electrophoresis of the 35S-labeled glycosaminoglycans. Cell preparations, enriched to 75% basophilic leukocytes by sorting for IgE+ cells, also synthesized 35S-labeled proteoglycans containing chondroitin sulfate and heparin. In one experiment, treatment of the cells with 1 microM calcium ionophore A23187 resulted in a 12% net release of both chondroitin sulfate and heparin containing 35S-labeled proteoglycans, a 57% net release of histamine, and the de novo generation of 8, 8, and 0.16 ng of immunoreactive equivalents of prostaglandin D2, leukotriene C4, and leukotriene B4, respectively, per 10(6) cells. Because only mast cells have been found to contain Pronase-resistant heparin proteoglycans, to generate PGD2 on cell activation, and to contain granules with scroll and grating patterns, these findings indicate that in some patients with myelogenous leukemia there are basophilic cells that possess properties of tissue mast cells.  相似文献   

12.
The embryonic rat parietal yolk sac has been previously shown to synthesize a number of basement membrane glycoconjugates including type IV procollagen, laminin, and entactin. In this study, parietal yolk sacs were isolated from 14.5-day rat embryos and incubated in organ culture for 4-7 h with [35S]sulfate, [3H] glucosamine, and/or 3H-labeled amino acids, and the newly synthesized proteoglycans were characterized. The major [35S]sulfate-labeled macromolecule represented approximately 90% of the medium and 80% of the tissue radioactivity. It also represented nearly 80% of the total [3H]glucosamine-labeled glycosaminoglycans. After purification by sequential ion-exchange chromatography and isopycnic CsCI density gradient ultracentrifugation, size-exclusion high-performance liquid chromatography showed a single species with an estimated Mr of 8-9 X 10(5). The intact proteoglycan did not form aggregates in the presence of exogenous hyaluronic acid or cartilage aggregates. Alkaline borohydride treatment released glycosaminoglycan chains with Mr of 2.0 X 10(4) which were susceptible to chondroitinase AC II and chondroitinase ABC digestion. Analysis by high-performance liquid chromatography of the disaccharides generated by chondroitinase ABC digestion revealed that chondroitin 6-sulfate was the predominant isomer. The uronic acid content of the glycosaminoglycans was 92% glucuronic acid and 8% iduronic acid, and the hexosamine content was 96% galactosamine and 4% glucosamine. No significant amounts of N- or O-linked oligosaccharides were detected. Deglycosylation of the proteoglycan with chondroitinase ABC in the presence of protease inhibitors revealed a protein core with an estimated Mr of 1.25-1.35 X 10(5). These results indicated that the major proteoglycan synthesized by the 14.5-day rat embryo parietal yolk sac is a high-density chondroitin sulfate containing small amounts of copolymeric dermatan sulfate. Hyaluronic acid and minor amounts of heparan sulfate proteoglycan were also detected.  相似文献   

13.
Biosynthesis of proteoglycans by isolated rabbit glomeruli   总被引:8,自引:0,他引:8  
Isolated rabbit glomeruli were incubated in vitro with 35SO4 in order to analyze the proteoglycans synthesized. Proteoglycans extracted with 4 M guanidine HCl from whole isolated glomeruli and from purified glomerular basement membrane (GBM) were analyzed by gel filtration chromatography. Two types of sulfated proteoglycans were found to be synthesized by rabbit glomeruli and these contained either heparan sulfate or chondroitin/dermatan sulfate glycosaminoglycan chains. These glycosaminoglycans were characterized by their sensitivity to selective degradation by nitrous acid or chondroitinase ABC, respectively. The major proteoglycan extracted from the whole glomeruli was a chondroitin/dermatan sulfate species (75%), while purified GBM contained mostly heparan sulfate (70%). The glycosaminoglycan chains were estimated to be about 12,000 molecular weight which is consistent with previous estimates for similar molecules extracted from the rat GBM.  相似文献   

14.
A Fisher rat thyroid cell line was maintained in culture and the cells were labeled with [3H]glucosamine, [35S]sulfate, and [35S]cysteine to examine the synthesis of proteoglycans. 3H and 35S radioactivity from these precursors were incorporated into both chondroitin sulfate (CS) and heparan sulfate (HS) proteoglycans. CS proteoglycans were almost exclusively secreted into the medium while HS proteoglycans remained mainly associated with the cell layer. Single chain glycosaminoglycans released by papain digestion or alkaline borohydride treatment of either the CS or HS proteoglycans had average molecular weights of approximately 30,000 on Sepharose CL-6B chromatography. Both CS and HS proteoglycans were relatively small and contained only one or two glycosaminoglycans chains. 3H and 35S incorporation into both CS and HS proteoglycans were increased by thyroid-stimulating hormone (TSH) in a dose-dependent manner, which is in part explained by an adenylate cyclase-dependent mechanism as indicated by a similar effect in response to dibutyryl cAMP. TSH enhanced the incorporation of 35S into CS from [35S]cysteine about 1.5-fold and that from [35S]sulfate about 2-fold. This result demonstrated that the increased 35S incorporation from the [35S]sulfate precursor reflects an actual increase in sulfate incorporation and is not simply a result from an apparent increase in specific activity of the phosphoadenosine phosphosulfate donor. Analysis of disaccharides from chondroitinase digests revealed that the proportion of non-sulfated, 4-sulfated, and 6-sulfated disaccharides was not altered appreciably by TSH. These results, together with the disproportionate increase in 3H incorporation into CS from [3H]glucosamine, indicated that TSH increased the specific activity of the 3H label as well. Chase experiments revealed that CS proteoglycans were rapidly (t1/2 = 15 min) secreted into the medium and that the degradation of cell-associated proteoglycans was enhanced by TSH.  相似文献   

15.
The sulfatase enzymes, N-acetylgalactosamine-4-sulfatase (arylsulfatase B (ASB)) and galactose-6-sulfatase (GALNS) hydrolyze sulfate groups of CS. Deficiencies of ASB and GALNS are associated with the mucopolysaccharidoses. To determine if expression of ASB and GALNS impacts on glycosaminoglycans (GAGs) and proteoglycans beyond their association with the mucopolysaccharidoses, we modified the expression of ASB and GALNS by overexpression and by silencing with small interference RNA in MCF-7 cells. Content of total sulfated GAG (sGAG), chondroitin 4-sulfate (C4S), and total chondroitin sulfates (CSs) was measured following immunoprecipitation with C4S and CS antibodies and treatment with chondroitinase ABC. Following silencing of ASB or GALNS, total sGAG, C4S, and CS increased significantly. Following overexpression of ASB or GALNS, total sGAG, C4S, and CS declined significantly. Measurements following chondroitinase ABC treatment of the cell lysates demonstrated no change in the content of the other sGAG, including heparin, heparan sulfate, dermatan sulfate, and keratan sulfate. Following overexpression of ASB and immunoprecipitation with C4S antibody, virtually no sGAG was detectable. Total sGAG content increased to 23.39 (+/-1.06) microg/mg of protein from baseline of 12.47 (+/-0.68) microg/mg of protein following ASB silencing. mRNA expression of core proteins of the CS-containing proteoglycans, syndecan-1 and decorin, was significantly up-regulated following overexpression of ASB and GALNS. Soluble syndecan-1 protein increased following increases in ASB and GALNS and reduced following silencing, inversely to changes in CS. These findings demonstrate that modification of expression of the lysosomal sulfatases ASB and GALNS regulates the content of CSs.  相似文献   

16.
A high-performance liquid chromatography method for analyzing disaccharides derived from chondroitin sulfate glycosaminoglycans has been developed which employs a Whatman Partisil-10 PAC amino-cyano column and an acetonitrile/methanol/ammonium acetate solvent to resolve disulfated, monosulfated, and unsulfated disaccharides in a chromatographic run of less than 20 min. The single known trisulfated chrondroitin disaccharide can be eluted in an alternate solvent system containing the same mobile phase components in different proportions. Disaccharides were prepared for chromatography from glycosaminoglycans and proteoglycans of known compositions by digestion with chondroitinase ABC, with the exception of king crab cartilage glycosaminoglycan which was incubated sequentially with hyaluronidase and chondroitinase ABC. Disaccharides were extracted from the digestion mixtures in 80% ethanol, dried over nitrogen, resuspended in the HPLC solvent, and chromatographed at a flow rate of 1 ml/min. Unsaturated disaccharides in the column eluate were detected by continuous ultraviolet absorbance monitoring at 232 nm; alternatively, fractions were collected and assayed for uronic acid content or radioactivity. By utilizing the HPLC technique in conjunction with chondroitinase ABC and AC digestion and sulfatase hydrolysis, the epimeric structures of chondroitin sulfates E and H were confirmed. With this technique, rapid and reproducible analyses of chondroitin sulfate disaccharides generated from mouse mast cell proteoglycan and from glycosaminoglycans of squid cranial cartilage, shark skin, hagfish skin, and hagfish notocord were in close agreement with compositions obtained by other techniques.  相似文献   

17.
Although cell surface chondroitin sulfate (CS) is regarded as an auxiliary receptor for binding of herpes simplex virus to cells, and purified CS chain types A, B, and C are known to interfere poorly or not at all with the virus infection of cells, we have found that CS type E (CS-E), derived from squid cartilage, exhibited potent antiviral activity. The IC(50) values ranged from 0.06 to 0.2 mug/ml and substantially exceeded the antiviral potency of heparin, the known inhibitor of virus binding to cells. Furthermore, in mutant gro2C cells that express CS but not heparan sulfate, CS-E showed unusually high anti-herpes virus activity with IC(50) values of <1 ng/ml. Enzymatic degradation of CS-E with chondroitinase ABC abolished its antiviral activity. CS-E inhibited the binding to cells of the purified virus attachment protein gC. A direct interaction of gC with immobilized CS-E and inhibition of this binding by CS-E oligosaccharide fragments greater than octasaccharide were demonstrated. Likewise, the gro2C-specific CS chains interfered with the binding of viral gC to these cells and were found to contain a considerable proportion (13%) of the E-disaccharide unit, suggesting that this unit is an essential component of the CS receptor for herpes simplex virus on gro2C cells and that the antiviral activity of CS-E was due to interference with the binding of viral gC to a CS-E-like receptor on the cell surface. Knowledge of the determinants of antiviral properties of CS-E will help in the development of inhibitors of herpes simplex virus infections in humans.  相似文献   

18.
Five monoclonal antibodies (MAb), 7D4, 4C3, 6C3, 4D3, and 3C5, were produced in mice immunized with high buoyant density embryonic chick bone marrow proteoglycans (PGs) as antigen. All of these MAb recognized epitopes in native chick bone marrow and cartilage PGs which could be selectively removed by chondroitinase ABC and chondroitinase AC II, indicating that their epitopes were present in chondroitin sulfate glycosaminoglycans (GAGs). These MAb recognized epitopes present in purified cartilage PGs obtained from a wide variety of different vertebrate species. However, none of the new MAb detected epitopes in Swarm rat chondrosarcoma PG. On the basis of these results, we propose that these MAb recognize novel epitopes located in chondroitin sulfate/dermatan sulfate glycosaminoglycan (CS/DS GAG) chains, representing at least four and possibly five different structures. Immunocytochemical studies have shown that the epitopes identified by these new MAb are differentially distributed in tissues. All of these MAb immunocytochemically detected epitopes in embryonic chick cartilage and bone marrow. Three of them (4C3, 7D4, and 6C3) recognized epitopes in adult human skin. All three detected epitopes in the epidermis, one (6C3) strongly detected epitopes in the papillary dermis, and two (4C3, 7D4) detected epitopes in the reticular dermis. Immunostaining patterns in skin using the new MAb directed against native CS/DS structures were distinctly different from those obtained using MAb against the common CS isomers. The distribution of these CS epitopes in functionally distinct domains of different tissues implies that these structures have functional and biological significance.  相似文献   

19.
1. Isomeric chondroitin sulfate proteoglycans were extracted from human, bovine, swine and rabbit aortas by 4 M guanidine-HCl and were fractionated and purified by CsCl isopycnic centrifugation, Sepharose CL-4B gel filtration, DEAE-Sepharose ion-exchange chromatography and octyl-Sepharose hydrophobic interaction chromatography. 2. The molecular size and the composition of isomeric chondroitin sulfate proteoglycans varied among species. Variations were also noted in the composition and molecular weight of constituent glycosaminoglycan chains. 3. Observations made on chondroitinase ABC and chondroitinase AC digests of proteoglycans indicate that dermatan sulfate is linked to the core proteins through chondroitin sulfates.  相似文献   

20.
Perineuronal nets (PNNs) are extracellular matrix structures consisting of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R (Tn-R). They enwrap a subset of GABAergic inhibitory interneurons in the cerebral cortex and restrict experience-dependent cortical plasticity. While the expression profile of PNN components has been widely studied in many areas of the central nervous system of various animal species, it remains unclear how these components are expressed during the postnatal development of mouse primary visual cortex (V1). In the present study, we characterized the developmental time course of the formation of PNNs in the mouse primary visual cortex, using the specific antibodies against the two PNN component proteins aggrecan and tenascin-R, or the lectin Wisteria floribunda agglutinin (WFA) that directly binds to glycosaminoglycan chains of chondroitin sulfate proteoglycans (CSPGs). We found that the fluorescence staining signals of both the WFA staining and the antibody against aggrecan rapidly increased in cortical neurons across layers 2–6 during postnatal days (PD) 10–28 and reached a plateau around PD42, suggesting a full construction of PNNs by the end of the critical period. Co-staining with antibodies to Ca2 + binding protein parvalbumin (PV) demonstrated that the majority of PNN-surrounding cortical neurons are immunoreactive to PV. Similar expression profile of another PNN component tenascin-R was observed in the development of V1. Dark rearing of mice from birth significantly reduced the density of PNN-surrounding neurons. In addition, the expression of two recently identified CSPG receptors — Nogo receptor (NgR) and leukocyte common antigen-related phosphatase (LAR), showed significant increases from PD14 to PD70 in layer 2–6 of cortical PV-positive interneurons in normal reared mice, but decreased significantly in dark-reared ones. Taken together, these results suggest that PNNs form preferentially in cortical PV-positive interneurons in an experience-dependent manner, and reach full maturation around the end of the critical period of V1 development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号