首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The effect of cotranslationally active chaperones on the conformation of incomplete protein chains is poorly understood. The secondary structure of a 77-residue chaperone-bound N-terminal protein fragment corresponding to the first five helices (A-E) of apomyoglobin (apoMb1-77) is investigated here at the residue-specific level by multidimensional NMR. The substrate-binding domain of DnaK, DnaK-β, is employed as a chaperone model. By taking advantage of the improved spectral quality resulting from chaperone deuteration, we find that DnaK-β-bound apoMb1-77 displays a region of nonnative helicity at residues away from the main chaperone binding site. The nonnative structural motif comprises portions of the native D and E helices and has similar characteristics to the reported nonnative DE helical region of acid-unfolded full-length apoMb. Upon incorporation of the missing C-terminal amino acids, a structural kink develops between residues 56 and 57, and two separate native D and E helices are generated. This work highlights, for the first time to our knowledge, the presence of a nonnative helical motif in a large chaperone-bound protein fragment under physiologically relevant solution conditions.  相似文献   

2.
The Hsp70 superfamily is a ubiquitous chaperone class that includes conventional and large Hsp70s. BiP is the only conventional Hsp70 in the endoplasmic reticulum (ER) whose functions include: assisting protein folding, targeting misfolded proteins for degradation, and regulating the transducers of the unfolded protein response. The ER also possesses a single large Hsp70, the glucose-regulated protein of 170 kDa (Grp170). Like BiP it is an essential protein, but its cellular functions are not well understood. Here we show that Grp170 can bind directly to a variety of incompletely folded protein substrates in the ER, and as expected for a bona fide chaperone, it does not interact with folded secretory proteins. Our data demonstrate that Grp170 and BiP associate with similar molecular forms of two substrate proteins, but while BiP is released from unfolded substrates in the presence of ATP, Grp170 remains bound. In comparison to conventional Hsp70s, the large Hsp70s possess two unique structural features: an extended C-terminal α-helical domain and an unstructured loop in the putative substrate binding domain with an unknown function. We find that in the absence of the α-helical domain the interaction of Grp170 with substrates is reduced. In striking contrast, deletion of the unstructured loop results in increased binding to substrates, suggesting the presence of unique intramolecular mechanisms of control for the chaperone functions of large Hsp70s.  相似文献   

3.
Yushmanov VE  Mandal PK  Liu Z  Tang P  Xu Y 《Biochemistry》2003,42(13):3989-3995
The structure and backbone dynamics of an extended second transmembrane segment (TM2e) of the human neuronal glycine receptor alpha(1) subunit in sodium dodecyl sulfate micelles were studied by (1)H and (15)N solution-state NMR. The 28-amino acid segment contained the consensus TM2 domain plus part of the linker between the second and third transmembrane domains. The presence of a well-structured helical region of at least 13 amino acids long and an unstructured region near the linker was evident from the proton chemical shifts and the pattern of midrange nuclear Overhauser effects (NOE). (15)N relaxation rate constants, R(1) and R(2), and (15)N-[(1)H] NOE indicated restricted internal motions in the helical region with NOE values between 0.6 and 0.8. The squared order parameter (S(2)), the effective correlation time for fast internal motions (tau(e)), and the global rotational correlation time (tau(m)) were calculated for all TM2e backbone N-H bonds using the model-free approach. The S(2) values ranged about 0.75-0.86, and the tau(e) values were below 100 ps for most of the residues in the helical region. The tau(m) value, calculated from the dynamics of the helical region, was 5.1 ns. The S(2) values decreased to 0.1, and the tau(e) values sharply increased up to 1.2 ns at the linker near the C-terminus, indicating that the motion of this region is unrestricted. The results suggest a relatively high degree of motional freedom of TM2e in micelles and different propensities of the N- and C-terminal moieties of the transmembrane domain to assume stable helical structures.  相似文献   

4.
In the present study, we have used a non-denaturing gel electrophoresis assay to characterize the specificity of the peptide-induced depolymerization process of the isolated recombinant C-terminal domain (C30) of the molecular chaperone BiP, in the presence of specific synthetic peptides and with the neuropeptide Substance P. In the absence of peptidic ligand, C30 self-associates readily into multiple oligomeric species. Upon peptide addition, C30 oligomers convert into dimers, then into monomers. Our data indicate that the algorithm we previously developed to predict putative BiP binding sites in any protein sequence is also a good indicator as to whether a peptide can efficiently induce depolymerization of the C-terminal peptide binding domain and stimulate the ATPase activity of the full-length protein.  相似文献   

5.
Dengue virus (DENV) non-structural (NS) 4A is a membrane protein essential for viral replication. The N-terminal region of NS4A contains several helices interacting with the cell membrane and the C-terminal region consists of three potential transmembrane regions. The secondary structure of the intact NS4A is not known as the previous structural studies were carried out on its fragments. In this study, we purified the full-length NS4A of DENV serotype 4 into dodecylphosphocholine (DPC) micelles. Solution NMR studies reveal that NS4A contains six helices in DPC micelles. The N-terminal three helices are amphipathic and interact with the membrane. The C-terminal three helices are embedded in micelles. Our results suggest that NS4A contains three transmembrane helices. Our studies provide for the first time structural information of the intact NS4A of DENV and will be useful for further understanding its role in viral replication.  相似文献   

6.
The protein Pex19p functions as a receptor and chaperone of peroxisomal membrane proteins (PMPs). The crystal structure of the folded C‐terminal part of the receptor reveals a globular domain that displays a bundle of three long helices in an antiparallel arrangement. Complementary functional experiments, using a range of truncated Pex19p constructs, show that the structured α‐helical domain binds PMP‐targeting signal (mPTS) sequences with about 10 μM affinity. Removal of a conserved N‐terminal helical segment from the mPTS recognition domain impairs the ability for mPTS binding, indicating that it forms part of the mPTS‐binding site. Pex19p variants with mutations in the same sequence segment abolish correct cargo import. Our data indicate a divided N‐terminal and C‐terminal structural arrangement in Pex19p, which is reminiscent of a similar division in the Pex5p receptor, to allow separation of cargo‐targeting signal recognition and additional functions.  相似文献   

7.
The human adenosine A(2A) receptor (A(2A)R) is an integral membrane protein and a member of the G-protein-coupled receptor (GPCR) superfamily, characterized by seven transmembrane (TM) helices. Although helix-helix association in the lipid bilayer is known to be an essential step in the folding of GPCRs, the determinants of their structures, folding, and assembly in the cell membrane are poorly understood. Previous studies in our group showed that while peptides corresponding to all seven TM domains of A(2A)R form stable helical structures in detergent micelles and lipid vesicles, they display significant variability in their helical propensity. This finding suggested to us that some TM domains might need to interact with other domains to properly insert and fold in hydrophobic environments. In this study, we assessed the ability of TM peptides to interact in pairwise combinations. We analyzed peptide interactions in hydrophobic milieus using circular dichroism spectroscopy and F?rster resonance energy transfer. We find that specific interactions between TM helices occur, leading to additional helical content, especially in weakly helical TM domains, suggesting that some TM domains need a partner for proper folding in the membrane. The approach developed in this study will enable complete analysis of the TM domain interactions and the modeling of a folding pathway for A(2A)R.  相似文献   

8.
Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS. Limited proteolysis and mass spectrometry identified the 28 C-terminal residues of the S domain as a minimal binding site with low nanomolar affinity for PulS in vitro that is sufficient for outer membrane targeting of PulD in vivo. The region upstream of this binding site is not required for targeting or multimerization and does not interact with PulS, but it is required for secretin function in type II secretion. Although other secretin chaperones differ substantially from PulS in sequence and secondary structure, they have all adopted at least superficially similar mechanisms of interaction with their cognate secretins, suggesting that intrinsically disordered regions facilitate rapid interaction between secretins and their chaperones.  相似文献   

9.
Disabled-2 (Dab2) targets membranes and triggers a wide range of biological events, including endocytosis and platelet aggregation. Dab2, through its phosphotyrosine-binding (PTB) domain, inhibits platelet aggregation by competing with fibrinogen for αIIbβ3 integrin receptor binding. We have recently shown that the N-terminal region, including the PTB domain (N-PTB), drives Dab2 to the platelet membrane surface by binding to sulfatides through two sulfatide-binding motifs, modulating the extent of platelet aggregation. The three-dimensional structure of a Dab2-derived peptide encompassing the sulfatide-binding motifs has been determined in dodecylphosphocholine micelles using NMR spectroscopy. Dab2 sulfatide-binding motif contains two helices when embedded in micelles, reversibly binds to sulfatides with moderate affinity, lies parallel to the micelle surface, and when added to a platelet mixture, reduces the number and size of sulfatide-induced aggregates. Overall, our findings identify and structurally characterize a minimal region in Dab2 that modulates platelet homotypic interactions, all of which provide the foundation for rational design of a new generation of anti-aggregatory low-molecular mass molecules for therapeutic purposes.  相似文献   

10.
The plasmid pRN1 encodes for a multifunctional replication protein with primase, DNA polymerase and helicase activity. The minimal region required for primase activity encompasses amino-acid residues 40–370. While the N-terminal part of that minimal region (residues 47–247) folds into the prim/pol domain and bears the active site, the structure and function of the C-terminal part (residues 248–370) is unknown. Here we show that the C-terminal part of the minimal region folds into a compact domain with six helices and is stabilized by a disulfide bond. Three helices superimpose well with the C-terminal domain of the primase of the bacterial broad host range plasmid RSF1010. Structure-based site-directed mutagenesis shows that the C-terminal helix of the helix bundle domain is required for primase activity although it is distant to the active site in the crystallized conformation. Furthermore, we identified mutants of the C-terminal domain, which are defective in template binding, dinucleotide formation and conformation change prior to DNA extension.  相似文献   

11.
The fourth cytoplasmic domain, the so-called C-terminal juxtamembrane segment or helix VIII, has been identified in numerous G-protein-coupled receptors and exhibits unique functional characteristics. Efforts have been devoted to studying the juxtamembrane segment in order to understand the biological importance of the segment in G-protein activation of the cannabinoid CB1 and CB2 receptors. Recent biochemical data revealed that the CB1 C-terminal juxtamembrane peptide fragment CB1-(401-417) can directly activate the G-protein and also showed that the specificity of the signal transduction activation by the C-terminal juxtamembrane region is unique to the CB1 receptor but not to the CB2 receptor (Mukhopadhyay, S., and Howlett, A. C. (2001) Eur. J. Biochem. 268, 499-505). However, there is experimental work, not yet reported, on the conformational analyses and structural comparison between the respective helix VIII segments of the two receptors. In the present study, we have examined the conformational specificities of the cytoplasmic helical domains for both cannabinoid receptors. Three-dimensional structural features of two synthetic CB1 and CB2 peptides, CB1I397-G418 and CB2I298-K319, respectively, in membrane mimetic DPC micelles were studied using a combined high resolution NMR and computer modeling approach. Comparisons of the NMR-determined structures of the two peptides as well as their correspondent mutant peptides revealed their conformational properties and salt bridge dissimilarity, which might help us to understand the different structural roles of the fourth cytoplasmic helices in the function and regulation of CB1 and CB2 receptors.  相似文献   

12.
13.
The molecular co-chaperone BAG1 and other members of the BAG family bind to Hsp70/Hsc70 heat shock proteins through a conserved BAG domain that interacts with the ATPase domain of the chaperone. BAG1 and other accessory proteins stimulate ATP hydrolysis and regulate the ATP-driven activity of the chaperone complexes. Contacts are made through residues in helices alpha2 and alpha3 of the BAG domain and predominantly residues in the C-terminal lobe of the bi-lobed Hsc70 ATPase domain. Within the C-terminal lobe, a subdomain exists that contains all the contacts shown by mutagenesis to be required for BAG1 recognition. In this study, the subdomain, representing Hsc70 residues 229-309, was cloned and expressed as a separately folded unit. The results of in vitro binding assays demonstrate that this subdomain is sufficient for binding to BAG1. Binding analyses with surface plasmon resonance indicated that the subdomain binds to BAG1 with a 10-fold decrease in equilibrium dissociation constant (K(D) = 22 nM) relative to the intact ATPase domain. This result suggests that the stabilizing contacts for docking of BAG1 to Hsc70 are located in the C-terminal lobe of the ATPase domain. These findings provide new insights into the role of co-chaperones as nucleotide exchange factors.  相似文献   

14.
Mutations of the aryl hydrocarbon receptor interacting protein (AIP) have been associated with familial isolated pituitary adenomas predisposing to young-onset acromegaly and gigantism. The precise tumorigenic mechanism is not well understood as AIP interacts with a large number of independent proteins as well as three chaperone systems, HSP90, HSP70 and TOMM20. We have determined the structure of the TPR domain of AIP at high resolution, which has allowed a detailed analysis of how disease-associated mutations impact on the structural integrity of the TPR domain. A subset of C-terminal α-7 helix (Cα-7h) mutations, R304* (nonsense mutation), R304Q, Q307* and R325Q, a known site for AhR and PDE4A5 client-protein interaction, occur beyond those that interact with the conserved MEEVD and EDDVE sequences of HSP90 and TOMM20. These C-terminal AIP mutations appear to only disrupt client-protein binding to the Cα-7h, while chaperone binding remains unaffected, suggesting that failure of client-protein interaction with the Cα-7h is sufficient to predispose to pituitary adenoma. We have also identified a molecular switch in the AIP TPR-domain that allows recognition of both the conserved HSP90 motif, MEEVD, and the equivalent sequence (EDDVE) of TOMM20.  相似文献   

15.
Yao H  Stuart RA  Cai S  Sem DS 《Biochemistry》2008,47(7):1910-1917
F1Fo-ATP synthase is a large multiprotein complex, including at least 10 subunits in the membrane-bound Fo-sector. One of these Fo proteins is subunit e (Su e), involved in the stable dimerization of F1Fo-ATP synthase, and required for the establishment of normal cristae membrane architecture. As a step toward enabling structure-function studies of the Fo-sector, the Su e transmembrane region was structurally characterized in micelles. Based on a series of NMR and CD (circular dichroism) studies, a structural model of the Su e/micelle complex was constructed, indicating Su e is largely helical, and emerges from the micelle with Arg20 near the phosphate head groups. Su e only adopts this folded conformation in the context of the micelle, and is essentially disordered in DMSO, water or trifluoroethanol/water. Within the micelle the C-terminal Ala10-Arg20 stretch is helical, while the region N-terminal may be transiently helical, based on negative CSI (chemical shift index) values. The Ala10-Arg20 helix contains the G14XXXG18 motif, which has been proposed to play an important role in dimer formation with another protein from the Fo-sector. The Gly on the C-terminal end of this motif (Gly18) is slightly more mobile than the more buried Gly14, based on NMR order parameter measurements (Gly14 S2 = 0.950; Gly18 S2 = 0.895). Only one Su e transmembrane peptide is bound per micelle, and micelles are 22-23 A in diameter, composed of 51 +/- 4 dodecylphosphocholine detergent molecules. Although there is no evidence for Su e homodimerization via the transmembrane domain, potentially synergistic roles for N-terminal (membrane) and C-terminal (soluble) domain interactions may still occur. Furthermore, the presence of a buried charged residue (Arg7) suggests there may be interactions with other Fo-sector protein(s) that stabilize this charge, and possibly drive the folding of the N-terminal 9 residues of the transmembrane domain.  相似文献   

16.
Dyneins are molecular motors that translocate towards the minus ends of microtubules. In Chlamydomonas flagellar outer arm dynein, light chain 1 (LC1) associates with the nucleotide binding region within the gamma heavy chain motor domain and consists of a central leucine-rich repeat section that folds as a cylindrical right handed spiral formed from six beta-beta-alpha motifs. This central cylinder is flanked by terminal helical subdomains. The C-terminal helical domain juts out from the cylinder and is adjacent to a hydrophobic surface within the repeat region that is proposed to interact with the dynein heavy chain. The position of the C-terminal domain on LC1 and the unexpected structural similarity between LC1 and U2A' from the human spliceosome suggest that this domain interacts with the dynein motor domain.  相似文献   

17.
BiP possesses ATP binding/hydrolysis activities that are thought to be essential for its ability to chaperone protein folding and assembly in the endoplasmic reticulum (ER). We have produced a series of point mutations in a hamster BiP clone that inhibit ATPase activity and have generated a species-specific anti-BiP antibody to monitor the effects of mutant hamster BiP expression in COS monkey cells. The enzymatic inactivation of BiP did not interfere with its ability to bind to Ig heavy chains in vivo but did inhibit ATP-mediated release of heavy chains in vitro. Immunofluorescence staining and electron microscopy revealed vesiculation of the ER membranes in COS cells expressing BiP ATPase mutants. ER disruption was not observed when a "44K" fragment of BiP that did not include the protein binding domain was similarly mutated but was observed when the protein binding region of BiP was expressed without an ATP binding domain. This suggests that BiP binding to target proteins as an inactive chaperone is responsible for the ER disruption. This is the first report on the in vivo expression of mammalian BiP mutants and is demonstration that in vitro-identified ATPase mutants behave as dominant negative mutants when expressed in vivo.  相似文献   

18.
Protein 4.1N was identified as a binding molecule for the C-terminal cytoplasmic tail of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1) using a yeast two-hybrid system. 4.1N and IP(3)R1 associate in both subconfluent and confluent Madin-Darby canine kidney (MDCK) cells, a well studied tight polarized epithelial cell line. In subconfluent MDCK cells, 4.1N is distributed in the cytoplasm and the nucleus; IP(3)R1 is localized in the cytoplasm. In confluent MDCK cells, both 4.1N and IP(3)R1 are predominantly translocated to the basolateral membrane domain, whereas 4.1R, the prototypical homologue of 4.1N, is localized at the tight junctions (Mattagajasingh, S. N., Huang, S. C., Hartenstein, J. S., and Benz, E. J., Jr. (2000) J. Biol. Chem. 275, 30573-30585), and other endoplasmic reticulum marker proteins are still present in the cytoplasm. Moreover, the 4.1N-binding region of IP(3)R1 is necessary and sufficient for the localization of IP(3)R1 at the basolateral membrane domain. A fragment of the IP(3)R1-binding region of 4.1N blocks the localization of co-expressed IP(3)R1 at the basolateral membrane domain. These data indicate that 4.1N is required for IP(3)R1 translocation to the basolateral membrane domain in polarized MDCK cells.  相似文献   

19.
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.  相似文献   

20.
Insertion and translocation of soluble proteins into and across biological membranes are involved in many physiological and pathological processes, but remain poorly understood. Here, we describe the pH-dependent membrane insertion of the diphtheria toxin T domain in lipid bilayers by specular neutron reflectometry and solid-state NMR spectroscopy. We gained unprecedented structural resolution using contrast-variation techniques that allow us to propose a sequential model of the membrane-insertion process at angstrom resolution along the perpendicular axis of the membrane. At pH 6, the native tertiary structure of the T domain unfolds, allowing its binding to the membrane. The membrane-bound state is characterized by a localization of the C-terminal hydrophobic helices within the outer third of the cis fatty acyl-chain region, and these helices are oriented predominantly parallel to the plane of the membrane. In contrast, the amphiphilic N-terminal helices remain in the buffer, above the polar headgroups due to repulsive electrostatic interactions. At pH 4, repulsive interactions vanish; the N-terminal helices penetrate the headgroup region and are oriented parallel to the plane of the membrane. The C-terminal helices penetrate deeper into the bilayer and occupy about two thirds of the acyl-chain region. These helices do not adopt a transmembrane orientation. Interestingly, the T domain induces disorder in the surrounding phospholipids and creates a continuum of water molecules spanning the membrane. We propose that this local destabilization permeabilizes the lipid bilayer and facilitates the translocation of the catalytic domain across the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号