首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The NZB/B1NJ (NZB) mouse strain exhibits high cholesterol and HDL levels in blood compared with several other strains of mice. To study the genetic regulation of blood lipid levels, we performed a genome-wide linkage analysis in 542 chow-fed F2 female mice from an NZBxRF/J (RF) intercross and in a combined data set that included NZBxRF and MRL/MpJxSJL/J intercrosses. In the NZBxRF F2 mice, the cholesterol and HDL concentrations were influenced by quantitative trait loci (QTL) on chromosome (Chr) 5 [logarithm of odds (LOD) 17-19; D5Mit10] that was in the region identified earlier in crosses involving NZB mice, but two QTLs on Chr 12 (LOD 4.7; D12Mit182) and Chr 19 (LOD 5.7; D19Mit1) were specific to the NZBxRF intercross. Triglyceride levels were affected by two novel QTLs at D12Mit182 (LOD 8.7) and D15Mit13 (LOD 3.5). The combined-cross linkage analysis (1,054 mice, 231 markers) 1) identified four shared QTLs (Chrs 5, 7, 14, and 17) that were not detected in one of the parental crosses and 2) improved the resolution of two shared QTLs. In summary, we report additional loci regulating lipid levels in NZB mice that had not been identified earlier in crosses involving the NZB strain of mice. The identification of shared loci from multiple crosses increases confidence toward finding the QTL gene.  相似文献   

2.
This paper examines the distribution and prevalence of risk factors for coronary heart disease in a sample of 165 men and 202 women over 40 years of age who had earlier participated in a coronary prevention trial from a general practice in Cambridge, UK. No significant differences were observed in total cholesterol levels between men and women, and a quarter of the sample had concentrations above 6.5 mmol/l which is 250 mg/dl. There were significant sex differences in a number of risk factors with males having significantly higher prevalence of low high density lipoprotein, systolic and diastolic blood pressures, obesity, and smoking than women. About 8% of men and women were obese (as defined by a body mass index > 30), while 47% of men and 35% of women were mildly overweight (body mass index > 25). Two or more risk factors for coronary heart disease (high total cholesterol and/or hypertension and/or obesity) were present in 4% and 9% of older men and women respectively. Furthermore, about half the subjects had more than one risk factor for coronary heart disease.  相似文献   

3.
A low level of HDL-C is the most common plasma lipid abnormality observed in men with established coronary heart disease (CHD). To identify allelic variants associated with susceptibility to low HDL-C and CHD, we examined 60 candidate genes with key roles in HDL metabolism, insulin resistance, and inflammation using samples from the Veterans Affairs HDL Intervention Trial (VA-HIT; cases, n = 699) and the Framingham Offspring Study (FOS; controls, n = 705). VA-HIT was designed to examine the benefits of HDL-raising with gemfibrozil in men with low HDL-C (≤40 mg/dl) and established CHD. After adjustment for multiple testing within each gene, single-nucleotide polymorphisms (SNP) significantly associated with case status were identified in the genes encoding LIPC (rs4775065, P < 0.0001); CETP (rs5882, P = 0.0002); RXRA (rs11185660, P = 0.0021); ABCA1 (rs2249891, P = 0.0126); ABCC6 (rs150468, P = 0.0206; rs212077, P = 0.0443); CUBN (rs7893395, P = 0.0246); APOA2 (rs3813627, P = 0.0324); SELP (rs732314, P = 0.0376); and APOC4 (rs10413089, P = 0.0425). Included among the novel findings of this study are the identification of susceptibility alleles for low HDL-C/CHD risk in the genes encoding CUBN and RXRA, and the observation that genetic variation in SELP may influence CHD risk through its effects on HDL.  相似文献   

4.
5.
Background Many human diseases are modulated by intrauterine environment, which is called prenatal programming. This study investigated effects of prenatal glucocorticoids on the lipid metabolism of three filial generations of common marmosets. Methods Pregnant primates were treated with dexamethasone during pregnancy. Body weight and blood lipid parameters of adult female offspring (F1: n = 5, F2: n = 6, F3: n = 3) were compared with age‐related female controls (n = 12). Results F1, F2, and F3 offspring showed significantly lower percentage of plasma n3 fatty acids than controls. F2 and F3 presented higher cholesterol levels, with significantly more LDL cholesterol, significantly less HDL triglycerides and an enhanced cholesterol/HDL cholesterol ratio. Body weight was not significantly affected. Conclusions Prenatal dexamethasone led to higher amounts of cardiovascular risk factors and less protective parameters in female F1–F3 offspring. The intergenerational consequences suggest prenatal programming through epigenetic effects.  相似文献   

6.
The apolipoprotein A-V gene (APOA5) plays an important role in determining plasma triglyceride levels. We studied the effects of APOA5 polymorphisms on plasma triglyceride levels in Turks, a population with low levels of HDL cholesterol and a high prevalence of coronary artery disease. We found 15 polymorphisms, three of which were novel. Seven haplotype-tagging single nucleotide polymorphisms (SNPs) were chosen and genotyped in approximately 3,000 subjects. The rare alleles of the -1464T>C, -1131T>C, S19W, and 1259T>C SNPs were significantly associated with increased triglyceride levels (19-86 mg/dl; P < 0.05) and had clear gene-dose effects. Haplotype analysis of the nine common APOA5 haplotypes revealed significant effects on triglyceride levels (P < 0.001). Detailed analysis of haplotypes clearly showed that the -1464T>C polymorphism had no effect by itself but was a marker for the -1131T>C, S19W, and 1259T>C polymorphisms. The -1131T>C and 1259T>C polymorphisms were in a strong but incomplete linkage disequilibrium and appeared to have independent effects. Thus, the APOA5 -1131T>C, S19W, and 1259T>C rare alleles were associated with significant increases in plasma triglyceride levels. At least one of these alleles was present in approximately 40% of the Turks. Similar associations were observed for -1131T>C and S19W in white Americans living in San Francisco, California.  相似文献   

7.
Objective: Low high‐density lipoprotein cholesterol (HDL‐C), hypertriglyceridemia, and small dense‐low density lipoprotein (LDL) are key components of metabolic syndrome (MS). Cholesteryl ester transfer protein (CETP) mediates the transfer of triglycerides (TGs) from TG‐rich lipoproteins to HDL and LDL particles in exchange for cholesteryl esters, leading to low HDL‐C and small dense‐LDL. The aim of this study was to investigate the role of CETP in subjects with MS. Research Methods and Procedures: In a cross‐sectional cohort of 234 middle‐aged men and 252 women randomly selected from the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk (SAPHIR) study, MS was diagnosed according to the National Cholesterol Education Program guidelines. CETP mass was determined by enzyme‐linked immunosorbent assay and LDL size‐by‐gradient polyacrylamide gel electrophoresis. Results: Men and women with MS had lower HDL‐C (45 ± 7 vs. 58 ± 13 and 48 ± 10 vs. 71 ± 14 mg/dL for men and women, respectively; p < 0.001 for all) and higher TG levels (222 ± 71 vs. 98 ± 54 and 167 ± 67 vs. 90 ± 35 mg/dL for men and women, respectively; p < 0.001 for all) than healthy subjects. LDL size was lower in subjects with MS (256 ± 11 Å vs. 267 ± 11 Å and 262 ± 10 Å vs. 273 ± 8 Å for men and women, respectively; p < 0.001 for all). CETP mass was higher in men with MS (1.87 ± 0.78 vs. 1.40 ± 0.65 μg/mL; p < 0.001) but not in women (1.74 ± 0.79 vs. 1.62 ± 0.62 μg/mL). CETP mass correlated inversely with LDL size in both men and women (r = ?0.19, p < 0.01 and r = ?0.13, p < 0.05 in men and women, respectively). Discussion: MS is associated with increased CETP mass in men. Increased CETP mass may be responsible for reduced HDL‐C and reduced LDL particle diameter in MS.  相似文献   

8.
Objectives: The relationship of plasma adiponectin levels with various anthropometric and metabolic factors has been surveyed extensively in adults. However, how plasma adiponectin levels are related to various anthropometric indices and cardiovascular risk factors in adolescents is not as vigorously studied. In this study, we investigated this among healthy nondiabetic adolescents. Research Methods and Procedures: Two hundred thirty nondiabetic subjects (125 boys and 105 girls, ~10 to 19 years old) were included. The plasma adiponectin, fasting plasma glucose, insulin, lipids and anthropometric indices including body height, weight, waist circumference, and hip circumference were examined. Body fat mass (FM) and percentage were obtained from DXA scan. The homeostasis model assessment was applied to estimate the degree of insulin resistance. Results: The plasma adiponectin levels were significantly higher in girls (30.79 ± 14.48 μg/mL) than boys (22.87 ± 11.41 μg/mL). The plasma adiponectin levels were negatively related to BMI, FM, FM percentage, waist circumference, waist‐to‐hip ratio, insulin resistance, plasma insulin, triglycerides, and uric acid levels, but positively with high‐density lipoprotein cholesterol (HDL‐C) with the adjustment for age and gender. Using different multivariate linear regression models, only age and HDL‐C were consistently related to the plasma adiponectin levels after adjustment for the other variables. Discussion: The relationship between plasma adiponectin and various anthropometric indices and metabolic factors, especially HDL‐C, previously reported in adults was present in the healthy nondiabetic adolescents. Whether variation of plasma adiponectin levels in healthy nondiabetic adolescents may influence their future coronary artery disease risk warrants further investigation.  相似文献   

9.
10.
11.
Two month old C57BL/6 mice were placed on three different diets: 1) normal diet (NC; 0.025% cholesterol), 2) hypercholesterolemic Western-type diet (HC-W; 0.2% cholesterol), and 3) hypercholesterolemic Paigen-type diet (HC-P; 1.25% cholesterol plus 0.5% cholic acid). At 6 months of age, the animals underwent ligation of the left carotid artery and were randomly assigned to vehicle (PBS, subcutaneous) or angiotensin II (Ang II; 1.4 mg/kg/day, subcutaneous) treatment for 4 weeks. Low density lipoprotein-cholesterol levels were similarly increased in both HC diets (NC, 4 +/- 3 mg/dl; HC-W, 123 +/- 17 mg/dl; HC-P, 160 +/- 14 mg/dl). However, the levels of high density lipoprotein-cholesterol (HDL-C) were reduced only in animals fed the HC-P diet (NC, 82 +/- 6 mg/dl; HC-W, 79 +/- 7 mg/dl; HC-P, 58 +/- 7 mg/dl). In Ang II-treated mice, carotid artery ligation induced intimal smooth muscle cell proliferation to a similar extent in NC- and HP-W-fed animals. However, a significantly larger intimal area developed in ligated vessels from Ang II-treated mice fed the HC-P diet (3.6-fold higher than in Ang II-treated NC mice). Together, these results show the accelerating effect of mild hypercholesterolemia, reduced HDL-C levels, and Ang II on intimal hyperplasia after carotid artery ligation in mice.  相似文献   

12.
In low density lipoprotein receptor (LDLR)-deficient mice, overexpression of human plasma phospholipid transfer protein (PLTP) results in increased atherosclerosis. PLTP strongly decreases HDL levels and might alter the antiatherogenic properties of HDL particles. To study the potential interaction between human PLTP and apolipoprotein A-I (apoA-I), double transgenic animals (hPLTPtg/hApoAItg) were compared with hApoAItg mice. PLTP activity was increased 4.5-fold. Plasma total cholesterol and phospholipid were decreased. Average HDL size (analyzed by gel filtration) increased strongly, hPLTPtg/hApoAItg mice having very large, LDL-sized, HDL particles. Also, after density gradient ultracentrifugation, a substantial part of the apoA-I-containing lipoproteins in hPLTPtg/hApoAItg mice was found in the LDL density range. In cholesterol efflux studies from macrophages, HDL isolated from hPLTPtg/hApoAItg mice was less efficient than HDL isolated from hApoAItg mice. Furthermore, it was found that the largest subfraction of the HDL particles present in hPLTPtg/hApoAItg mice was markedly inferior as a cholesterol acceptor, as no labeled cholesterol was transferred to this fraction. In an LDLR-deficient background, the human PLTP-expressing mouse line showed a 2.2-fold increased atherosclerotic lesion area. These data demonstrate that the action of human PLTP in the presence of human apoA-I results in the formation of a dysfunctional HDL subfraction, which is less efficient in the uptake of cholesterol from cholesterol-laden macrophages.  相似文献   

13.
The reduction of cardiovascular mortality associated with moderate alcohol consumption is chiefly thought to be mediated by an increase of high density lipoprotein cholesterol (HDL-CH). This study highlights additional qualitative changes of HDL that might augment this antiatherogenic effect. In 279 healthy men, alcohol and nutrient consumption were evaluated. Groups 1 (n=62), 2 (n=172), and 3 (n=45) comprised subjects with alcohol consumption of 0-5.0, 5.1-30.0, and 30.1-75 g/day, respectively. Lipid analysis was performed in nonfractionated and fractionated plasma, including subfractions HDL(2a), HDL(2b), and HDL(3). No difference in LDL-cholesterol was observed. Compared with group 1, groups 2 and 3 exhibited significant increases of HDL-CH (group 1, 44 +/- 10 mg/dl; group 2, 51 +/- 11 mg/dl; group 3, 55 +/- 11 mg/dl; mean +/- SD, P<0.0005), accompanied by enhanced lipidation of HDL (increase of the HDL(2)-CH/HDL(3)-CH ratio). Moreover, phospholipid enrichment of HDL occurred in alcohol consumers, whereas the ratios between other HDL components remained constant. Multivariate analysis revealed alcohol to have the foremost statistical influence on changes of the HDL fraction, followed by body mass index and physical activity level. The increased lipidation of HDL found in alcohol consumers might augment the antiatherogenic effect of HDL-CH increase. In addition, the phospholipid enrichment of HDL might reduce the inflammatory response of atherogenesis.  相似文献   

14.
15.
Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp−/−) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp−/− mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp−/− mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.  相似文献   

16.
A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.  相似文献   

17.
18.
19.
Carriers of the apolipoprotein A-IMilano (apoA-IM) variant, R173C, have reduced levels of plasma HDL but no increase in cardiovascular disease. Despite intensive study, it is not clear whether the removal of the arginine or the introduction of the cysteine is responsible for this altered functionality. We investigated this question using two engineered variations of the apoA-IM mutation: R173S apoA-I, similar to apoA-IM but incapable of forming a disulfide bond, and R173K apoA-I, a conservative mutation. Characterization of the lipid-free proteins showed that the order of stability was wild type≈R173K>R173S>R173C. Compared with wild-type apoA-I, apoA-IM had a lower affinity for lipids, while R173S apoA-I displayed intermediate affinity. The in vivo effects of the apoA-I variants were measured by injecting apoA-I-expressing adeno-associated virus into apoA-I-null mice. Mice that expressed the R173S variant again showed an intermediate phenotype. Thus, both the loss of the arginine and its replacement by a cysteine contribute to the altered properties of apoA-IM. The arginine is potentially involved in an intrahelical salt bridge with E169 that is disrupted by the loss of the positively charged arginine and repelled by the cysteine, destabilizing the helix bundle domain in the apoA-I molecule and modifying its lipid binding characteristics.  相似文献   

20.
Macrophages (Mphi) at sites of acute tissue injury accumulate and export cholesterol quickly. This metabolic activity is likely dependent on the physiological function of a major acute-phase protein, serum amyloid A 2.1 (SAA2.1), that is synthesized by hepatocytes as part of a systemic response to acute injury. Our previous studies using cholesterol-laden J774 mouse Mphi showed that an N-terminal domain of SAA2.1 inhibits acyl-CoA:cholesterol acyltransferase activity, and a C-terminal domain enhances cholesteryl ester hydrolase activity. The net effect of this enzymatic regulation is to drive intracellular cholesterol to its unesterified state, the form readily exportable to an extracellular acceptor such as HDL. Here, we demonstrate that these domains from mouse SAA2.1, when delivered in liposomal formulation, are effective at preventing and reversing aortic lipid lesions in apolipoprotein E-deficient mice maintained on high-fat diets. Furthermore, mouse SAA peptides, in liposomal formulation, are effective at regulating cholesterol efflux in THP-1 human Mphi, and homologous domains from human SAA are effective in mouse J774 cells. These peptides operate at the level of the foam cell in the reverse cholesterol pathway and therefore may be used in conjunction with other agents that act more distally in this process. Such human peptides, or small molecule mimics of their structure, may prove to be potent antiatherogenic agents in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号