首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Infantile myofibromatosis (IM) is a disorder of mesenchymal proliferation characterized by the development of nonmetastasizing tumors in the skin, muscle, bone, and viscera. Occurrence within families across multiple generations is suggestive of an autosomal-dominant (AD) inheritance pattern, but autosomal-recessive (AR) modes of inheritance have also been proposed. We performed whole-exome sequencing (WES) in members of nine unrelated families clinically diagnosed with AD IM to identify the genetic origin of the disorder. In eight of the families, we identified one of two disease-causing mutations, c.1978C>A (p.Pro660Thr) and c.1681C>T (p.Arg561Cys), in PDGFRB. Intriguingly, one family did not have either of these PDGFRB mutations but all affected individuals had a c.4556T>C (p.Leu1519Pro) mutation in NOTCH3. Our studies suggest that mutations in PDGFRB are a cause of IM and highlight NOTCH3 as a candidate gene. Further studies of the crosstalk between PDGFRB and NOTCH pathways may offer new opportunities to identify mutations in other genes that result in IM and is a necessary first step toward understanding the mechanisms of both tumor growth and regression and its targeted treatment.  相似文献   

3.
Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156−2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156−2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.  相似文献   

4.
Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4), c.652C>T (p.Arg218), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology.  相似文献   

5.

Purpose

Retinal dystrophies are genetically heterogeneous, resulting from mutations in over 200 genes. Prior to the development of massively parallel sequencing, comprehensive genetic screening was unobtainable for most patients. Identifying the causative genetic mutation facilitates genetic counselling, carrier testing and prenatal/pre-implantation diagnosis, and often leads to a clearer prognosis. In addition, in a proportion of cases, when the mutation is known treatment can be optimised and patients are eligible for enrolment into clinical trials for gene-specific therapies.

Methods

Patient genomic DNA was sheared, tagged and pooled in batches of four samples, prior to targeted capture and next generation sequencing. The enrichment reagent was designed against genes listed on the RetNet database (July 2010). Sequence data were aligned to the human genome and variants were filtered to identify potential pathogenic mutations. These were confirmed by Sanger sequencing.

Results

Molecular analysis of 20 DNAs from retinal dystrophy patients identified likely pathogenic mutations in 12 cases, many of them known and/or confirmed by segregation. These included previously described mutations in ABCA4 (c.6088C>T,p.R2030*; c.5882G>A,p.G1961E), BBS2 (c.1895G>C,p.R632P), GUCY2D (c.2512C>T,p.R838C), PROM1 (c.1117C>T,p.R373C), RDH12 (c.601T>C,p.C201R; c.506G>A,p.R169Q), RPGRIP1 (c.3565C>T,p.R1189*) and SPATA7 (c.253C>T,p.R85*) and new mutations in ABCA4 (c.3328+1G>C), CRB1 (c.2832_2842+23del), RP2 (c.884-1G>T) and USH2A (c.12874A>G,p.N4292D).

Conclusions

Tagging and pooling DNA prior to targeted capture of known retinal dystrophy genes identified mutations in 60% of cases. This relatively high success rate may reflect enrichment for consanguineous cases in the local Yorkshire population, and the use of multiplex families. Nevertheless this is a promising high throughput approach to retinal dystrophy diagnostics.  相似文献   

6.
Catel-Manzke syndrome is characterized by Pierre Robin sequence and a unique form of bilateral hyperphalangy causing a clinodactyly of the index finger. We describe the identification of homozygous and compound heterozygous mutations in TGDS in seven unrelated individuals with typical Catel-Manzke syndrome by exome sequencing. Six different TGDS mutations were detected: c.892A>G (p.Asn298Asp), c.270_271del (p.Lys91Asnfs22), c.298G>T (p.Ala100Ser), c.294T>G (p.Phe98Leu), c.269A>G (p.Glu90Gly), and c.700T>C (p.Tyr234His), all predicted to be disease causing. By using haplotype reconstruction we showed that the mutation c.298G>T is probably a founder mutation. Due to the spectrum of the amino acid changes, we suggest that loss of function in TGDS is the underlying mechanism of Catel-Manzke syndrome. TGDS (dTDP-D-glucose 4,6-dehydrogenase) is a conserved protein belonging to the SDR family and probably plays a role in nucleotide sugar metabolism.  相似文献   

7.
Punctate palmoplantar keratodermas (PPKPs) are rare autosomal-dominant inherited skin diseases that are characterized by multiple hyperkeratotic plaques distributed on the palms and soles. To date, two different loci in chromosomal regions 15q22-15q24 and 8q24.13-8q24.21 have been reported. Pathogenic mutations, however, have yet to be identified. In order to elucidate the genetic cause of PPKP type Buschke-Fischer-Brauer (PPKP1), we performed exome sequencing in five affected individuals from three families, and we identified in chromosomal region 15q22.33-q23 two heterozygous nonsense mutations—c.370C>T (p.Arg124) and c.481C>T (p.Arg161)—in AAGAB in all affected individuals. Using immunoblot analysis, we showed that both mutations result in premature termination of translation and truncated protein products. Analyses of mRNA of affected individuals revealed that the disease allele is either not detectable or only detectable at low levels. To assess the consequences of the mutations in skin, we performed immunofluorescence analyses. Notably, the amount of granular staining in the keratinocytes of affected individuals was lower in the cytoplasm but higher around the nucleus than it was in the keratinocytes of control individuals. AAGAB encodes the alpha-and gamma-adaptin-binding protein p34 and might play a role in membrane traffic as a chaperone. The identification of mutations, along with the results from additional studies, defines the genetic basis of PPKP1 and provides evidence that AAGAB plays an important role in skin integrity.  相似文献   

8.
In a subset of inherited retinal degenerations (including cone, cone-rod, and macular dystrophies), cone photoreceptors are more severely affected than rods; ABCA4 mutations are the most common cause of this heterogeneous class of disorders. To identify retinal-disease-associated genes, we performed exome sequencing in 28 individuals with “cone-first” retinal disease and clinical features atypical for ABCA4 retinopathy. We then conducted a gene-based case-control association study with an internal exome data set as the control group. TTLL5, encoding a tubulin glutamylase, was highlighted as the most likely disease-associated gene; 2 of 28 affected subjects harbored presumed loss-of-function variants: c.[1586_1589delAGAG];[1586_1589delAGAG], p.[Glu529Valfs2];[Glu529Valfs2], and c.[401delT(;)3354G>A], p.[Leu134Argfs45(;)Trp1118]. We then inspected previously collected exome sequence data from individuals with related phenotypes and found two siblings with homozygous nonsense variant c.1627G>T (p.Glu543) in TTLL5. Subsequently, we tested a panel of 55 probands with retinal dystrophy for TTLL5 mutations; one proband had a homozygous missense change (c.1627G>A [p.Glu543Lys]). The retinal phenotype was highly similar in three of four families; the sibling pair had a more severe, early-onset disease. In human and murine retinae, TTLL5 localized to the centrioles at the base of the connecting cilium. TTLL5 has been previously reported to be essential for the correct function of sperm flagella in mice and play a role in polyglutamylation of primary cilia in vitro. Notably, genes involved in the polyglutamylation and deglutamylation of tubulin have been associated with photoreceptor degeneration in mice. The electrophysiological and fundus autofluorescence imaging presented here should facilitate the molecular diagnosis in further families.  相似文献   

9.
Background: Stargardt disease (STGD) is the most common form of juvenile macular dystrophy associated with progressive central vision loss, and is agenetically and clinically heterogeneous disease. Molecular diagnosis is of great significance in aiding the clinical diagnosis, helping to determine the phenotypic severity and visual prognosis. In the present study, we determined the clinical and genetic features of seven childhood-onset and three adult-onset Chinese STGD families. We performed capture next-generation sequencing (NGS) of the probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes.Methods: In all, ten unrelated Chinese families were enrolled. Panel-based NGS was performed to identify potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes, including the five known STGD genes (ABCA4, PROM1, PRPH2, VMD2, and ELOVL4). Variant analysis, Sanger validation, and segregation tests were utilized to validate the disease-causing mutations in these families.Results: Using systematic data analysis with an established bioinformatics pipeline and segregation analysis, 17 pathogenic mutations in ABCA4 were identified in the 10 STGD families. Four of these mutations were novel: c.371delG, c.681T > G, c.5509C > T, and EX37del. Childhood-onset STGD was associated with severe visual loss, generalized retinal dysfunction and was due to more severe variants in ABCA4 than those found in adult-onset disease.Conclusions: We expand the existing spectrum of STGD and reveal the genotype–phenotype relationships of the ABCA4 mutations in Chinese patients. Childhood-onset STGD lies at the severe end of the spectrum of ABCA4-associated retinal phenotypes.  相似文献   

10.
11.
We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown.  相似文献   

12.
Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function.  相似文献   

13.
Mutations Arg124Cys, Thr538Arg, Arg555Thr, Arg555Gln, Leu558Pro, and His626Arg in TGFBI gene were analyzed by polymerase chain reaction and restriction in 84 patients with various forms of corneal stromal dystrophies from 49 unrelated families and 29 clinically healthy relatives of these patients. A new mutation in TGFBI gene, Leu558Pro, was identified in the patients with atypical lattice dystrophy. The haplotypes of four microsatellite markers surrounding TGFBI gene region were analyzed in 22 families. The data on association of genotype and phenotype suggest that the analysis of TGFBI gene mutations is important for differential diagnostics of corneal dystrophies.  相似文献   

14.
Acephalic spermatozoa syndrome is a rare and severe form of teratozoospermia characterized by a predominance of headless spermatozoa in the ejaculate. Family clustering and consanguinity suggest a genetic origin; however, causative mutations have yet to be identified. We performed whole-exome sequencing in two unrelated infertile men and subsequent variant filtering identified one homozygous (c.824C>T [p.Thr275Met]) and one compound heterozygous (c.1006C>T [p.Arg356Cys] and c.485T>A [p.Met162Lys]) SUN5 (also named TSARG4) variants. Sanger sequencing of SUN5 in 15 additional unrelated infertile men revealed four compound heterozygous (c.381delA [p.Val128Serfs7] and c.824C>T [p.Thr275Met]; c.381delA [p.Val128Serfs7] and c.781G>A [p.Val261Met]; c.216G>A [p.Trp72] and c.1043A>T [p.Asn348Ile]; c.425+1G>A/c.1043A>T [p.Asn348Ile]) and two homozygous (c.851C>G [p.Ser284]; c.350G>A [p.Gly114Arg]) variants in six individuals. These 10 SUN5 variants were found in 8 of 17 unrelated men, explaining the genetic defect in 47.06% of the affected individuals in our cohort. These variants were absent in 100 fertile population-matched control individuals. SUN5 variants lead to absent, significantly reduced, or truncated SUN5, and certain variants altered SUN5 distribution in the head-tail junction of the sperm. In summary, these results demonstrate that biallelic SUN5 mutations cause male infertility due to autosomal-recessive acephalic spermatozoa syndrome.  相似文献   

15.
Bestrophin-1 is preferentially expressed at the basolateral membrane of the retinal pigmented epithelium (RPE) of the retina. Mutations in the BEST1 gene cause the retinal dystrophies vitelliform macular dystrophy, autosomal-dominant vitreochoroidopathy, and autosomal-recessive bestrophinopathy. Here, we describe four missense mutations in bestrophin-1, three that we believe are previously unreported, in patients diagnosed with autosomal-dominant and -recessive forms of retinitis pigmentosa (RP). The physiological function of bestrophin-1 remains poorly understood although its heterologous expression induces a Cl-specific current. We tested the effect of RP-causing variants on Cl channel activity and cellular localization of bestrophin-1. Two (p.L140V and p.I205T) produced significantly decreased chloride-selective whole-cell currents in comparison to those of wild-type protein. In a model system of a polarized epithelium, two of three mutations (p.L140V and p.D228N) caused mislocalization of bestrophin-1 from the basolateral membrane to the cytoplasm. Mutations in bestrophin-1 are increasingly recognized as an important cause of inherited retinal dystrophy.  相似文献   

16.
17.
Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3–p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel’s electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder.  相似文献   

18.
The majority of the genetic causes of autosomal-recessive (ar) cone-rod dystrophy (CRD) are currently unknown. A combined approach of homozygosity mapping and exome sequencing revealed a homozygous nonsense mutation (c.565C>T [p.Glu189]) in RAB28 in a German family with three siblings with arCRD. Another homozygous nonsense mutation (c.409C>T [p.Arg137]) was identified in a family of Moroccan Jewish descent with two siblings affected by arCRD. All five affected individuals presented with hyperpigmentation in the macula, progressive loss of the visual acuity, atrophy of the retinal pigment epithelium, and severely reduced cone and rod responses on the electroretinogram. RAB28 encodes a member of the Rab subfamily of the RAS-related small GTPases. Alternative RNA splicing yields three predicted protein isoforms with alternative C-termini, which are all truncated by the nonsense mutations identified in the arCRD families in this report. Opposed to other Rab GTPases that are generally geranylgeranylated, RAB28 is predicted to be farnesylated. Staining of rat retina showed localization of RAB28 to the basal body and the ciliary rootlet of the photoreceptors. Analogous to the function of other RAB family members, RAB28 might be involved in ciliary transport in photoreceptor cells. This study reveals a crucial role for RAB28 in photoreceptor function and suggests that mutations in other Rab proteins may also be associated with retinal dystrophies.  相似文献   

19.
This study aimed to identify the underlying molecular genetic cause in four Spanish families clinically diagnosed of Retinitis Pigmentosa (RP), comprising one autosomal dominant RP (adRP), two autosomal recessive RP (arRP) and one with two possible modes of inheritance: arRP or X-Linked RP (XLRP). We performed whole exome sequencing (WES) using NimbleGen SeqCap EZ Exome V3 sample preparation kit and SOLID 5500xl platform. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation and the absence in local control population. This strategy allowed the detection of: (i) one novel heterozygous splice-site deletion in RHO, c.937-2_944del, (ii) one rare homozygous mutation in C2orf71, c.1795T>C; p.Cys599Arg, not previously associated with the disease, (iii) two heterozygous null mutations in ABCA4, c.2041C>T; p.R681* and c.6088C>T; p.R2030*, and (iv) one mutation, c.2405-2406delAG; p.Glu802Glyfs*31 in the ORF15 of RPGR. The molecular findings for RHO and C2orf71 confirmed the initial diagnosis of adRP and arRP, respectively, while patients with the two ABCA4 mutations, both previously associated with Stargardt disease, presented symptoms of RP with early macular involvement. Finally, the X-Linked inheritance was confirmed for the family with the RPGR mutation. This latter finding allowed the inclusion of carrier sisters in our preimplantational genetic diagnosis program.  相似文献   

20.
Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号