首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PKCδ是nPKC家族成员,参与细胞凋亡调控,其激活机制与特异性位点的磷酸化和半胱天冬酶3(caspase-3)的剪切密切联系.PKCδ激活后可通过多种途径介导细胞凋亡:激活多种蛋白激酶级联启动细胞凋亡信号,转位至线粒体诱导细胞色素C等凋亡因子的释放,核转位启动核内凋亡通路诱导细胞凋亡.本文综述了PKCδ的分子结构、激活机制以及调控细胞凋亡的最新研究进展.  相似文献   

2.
AIM To identify and characterize the effect of phosphorylation on the subcellular localization of Ankrd54.METHODS HEK293 T cells were treated with calyculin A, staurosporin or phorbol 12-myristate 13-acetate(PMA). Cells were transfected with eG FP-tagged Ankrd54 with or without Lyn tyrosine kinase(wild-type, Y397 F mutant, or Y508 F mutant). The subcellular localization was assessed by immunofluorescence imaging of cells, immunoblotting of subcellular fractionations. The phosphorylation of Ankrd54 was monitored using Phos-tagT M gel retardation. Phosphorylated peptides were analysed by multiplereaction-monitoring(MRM) proteomic analysis.RESULTS Activation of PKC kinases using PMA promoted nuclear export of Ankrd54 and correlated with increased Ankrd54 phosphorylation, assayed using Phos-tag TM gel retardation. Co-expression of an active form of the PKCδisoform specifically promoted both phosphorylation and cytoplasmic localization of Ankrd54, while PKCδ, Akt and PKA did not. Alanine mutation of several serine residues in the amino-terminal region of Ankrd54(Ser14, Ser17, Ser18, Ser19) reduced both PMA induced cytoplasmic localization and phosphorylation of Ankrd54. Using MRM proteomic analysis, phosphorylation of the Ser18 residue of Ankrd54 was readily detectable in response to PMA stimulation. PMA stimulation of cells co-expressing Ankrd54 and Lyn tyrosine kinase displayed increased coimmunoprecipitation and enhanced co-localization in the cytoplasm.CONCLUSION We identify phosphorylation by PKCδ as a major regulator of nuclear-cytoplasmic shuttling of Ankrd54, and its interaction with the tyrosine kinase Lyn.  相似文献   

3.
采用流式细胞术、蛋白质免疫印迹法检测了喜树碱诱导白血病细胞凋亡过程中蛋白激酶Cδ(protein kinase Cδ,PKCδ)与c-Jun氨基末端激酶(c-Jun N-termital kinase,JNK)的作用。结果发现,50 nmol/L喜树碱诱导处理U937细胞24、36或48 h后,细胞发生明显凋亡,并且PKCδ和JNK均被激活。用化学抑制剂rottlerin抑制PKCδ的活化可以降低喜树碱诱导细胞凋亡过程中JNK的磷酸化,进而抑制细胞凋亡;而用化学抑制剂SP600125抑制JNK的磷酸化也会降低PKCδ的剪切活化,进而一定程度地阻断细胞凋亡;同时,JNK抑制剂SP600125也可以阻断过表达PKCδ活性片段诱导的细胞凋亡。这些结果提示,PKCδ和JNK介导的信号通路可以相互调控,共同促进细胞凋亡。该研究对理解细胞凋亡的精细调控机制以及肿瘤的治疗都有一定的借鉴意义。  相似文献   

4.
舍格伦综合征(Sjgren's syndrome)是一种自身免疫性疾病,主要特征为淋巴细胞浸润唾液腺和泪腺,表现为眼干和口干等外分泌腺功能障碍。T细胞是浸润唾液腺的主要淋巴细胞,其介导的自身免疫反应在舍格伦综合征的发病机制中起关键作用。然而新近的研究表明,B细胞的功能异常在舍格伦综合征的发病过程中也起重要的作用。PKCδ在体内广泛表达,对于B细胞耐受的建立至关重要,是调控细胞凋亡的关键分子。但是,抑制PKCδ对唾液腺结构与功能的影响尚不清楚。  相似文献   

5.
Glioblastoma is an aggressive malignant brain tumor that starts in the brain or spine and frequently recurs after anticancer treatment. The development of an accurate diagnostic system combined with effective cancer therapy is essential to improve prognosis of glioma patients. Peptides, produced from phage display, are attractive biomolecules for glioma treatment because of their biostability, nontoxicity, and small size. In this study, we employed phage display methodology to screen for peptides that specifically recognize the target PKCδ as a novel biomarker for glioma. The phage library screening yielded four different peptides displayed on phages with a 20- to 200-pM Kd value for the recombinant PKCδ catalytic domain. Among these four phage peptides, we selected one to synthesize and tagged it with fluorescein isothiocyanate (FITC) based on the sequence of the PKCδ-binding phage clone. The synthetic peptide showed a relative binding affinity for antibody and localization in the U373 glioma cell. The kinase activity of PKCδ was inhibited by FITC-labeled peptide with an IC50 of 1.4 μM in vitro. Consequently, the peptide found in this study might be a promising therapeutic agent against malignant brain tumor.  相似文献   

6.
The review focuses on the role of vitamin A (retinol) in the control of energy homeostasis, and on the manner in which certain retinoids subvert this process, leading potentially to disease. In eukaryotic cells, the pyruvate dehydrogenase complex (PDHC) is negatively regulated by four pyruvate dehydrogenase kinases (PDKs) and two antagonistically acting pyruvate dehydrogenase phosphatases (PDPs). The second isoform, PDK2, is regulated by an autonomous mitochondrial signal cascade that is anchored on protein kinase Cδ (PKCδ), where retinoids play an indispensible co-factor role. Along with its companion proteins p66Shc, cytochrome c, and vitamin A, the PKCδ/retinol complex is located in the intermembrane space of mitochondria. At this site, and in contrast to cytosolic locations, PKCδ is activated by the site-specific oxidation of its cysteine-rich activation domain (CRD) that is configured into a complex RING-finger. Oxidation involves the transfer of electrons from cysteine moieties to oxidized cytochrome c, a step catalyzed by vitamin A. The PKCδ/retinol signalosome monitors the internal cytochrome c redox state that reflects the workload of the respiratory chain. Upon sensing demands for energy PKCδ signals the PDHC to increase glucose-derived fuel flux entering the KREBS cycle. Conversely, if excessive fuel flux surpasses the capacity of the respiratory chain, threatening the release of damaging reactive oxygen species (ROS), the polarity of the cytochrome c redox system is reversed, resulting in the chemical reduction of the PKCδ CRD, restoration of the RING-finger, refolding of PKCδ into the inactive, globular form, and curtailment of PDHC output, thereby constraining the respiratory capacity within safe margins. Several retinoids, notably anhydroretinol and fenretinide, capable of displacing retinol from binding sites on PKCδ, can co-activate PKCδ signaling but, owing to their extended system of conjugated double bonds, are unable to silence PKCδ in a timely manner. Left in the ON position, PKCδ causes chronic overload of the respiratory chain leading to mitochondrial dysfunction. This review explores how defects in the PKCδ signal machinery potentially contribute to metabolic and degenerative diseases.  相似文献   

7.
This study examined the role of interleukin (IL)-1 receptor-associated kinase (IRAK) and protein kinase C (PKC) in oxidized LDL (Ox-LDL)-induced monocyte IL-1β production. In THP1 cells, Ox-LDL induced time-dependent secretory IL-1β and IRAK1 activity; IRAK4, IRAK3, and CD36 protein expression; PKCδ-JNK1 phosphorylation; and AP-1 activation. IRAK1/4 siRNA and inhibitor (INH)-attenuated Ox-LDL induced secreted IL-1β and pro-IL-1β mRNA and pro-IL-1β and mature IL-1β protein expression, respectively. Diphenyleneiodonium chloride (NADPH oxidase INH) and N-acetylcysteine (free radical scavenger) attenuated Ox-LDL-induced reactive oxygen species generation, caspase-1 activity, and pro-IL-1β and mature IL-1β expression. Ox-LDL-induced secretory IL-1β production was abrogated in the presence of JNK INH II, Tanshinone IIa, Ro-31-8220, Go6976, Rottlerin, and PKCδ siRNA. PKCδ siRNA attenuated the Ox-LDL-induced increase in IRAK1 kinase activity, JNK1 phosphorylation, and AP-1 activation. In THP1 macrophages, CD36, toll-like receptor (TLR)2, TLR4, TLR6, and PKCδ siRNA prevented Ox-LDL-induced PKCδ and IRAK1 activation and IL-1β production. Enhanced Ox-LDL and IL-1β in systemic inflammatory response syndrome (SIRS) patient plasma demonstrated positive correlation with each other and with disease severity scores. Ox-LDL-containing plasma induced PKCδ and IRAK1 phosphorylation and IL-1β production in a CD36-, TLR2-, TLR4-, and TLR6-dependent manner in primary human monocytes. Results suggest involvement of CD36, TLR2, TLR4, TLR6, and the PKCδ-IRAK1-JNK1-AP-1 axis in Ox-LDL-induced IL-1β production.  相似文献   

8.
A series of 5-vinyl-3-pyridinecarbonitriles were synthesized and evaluated as PKCθ inhibitors. The systematic optimization of 4-[(4-methyl-1H-indol-5-yl)amino]-5-[(E)-2-phenylvinyl]-3-pyridinecarbonitrile 3 resulted in the identification of compound 23e as a potent PKCθ inhibitor with good selectivity over PKCδ.  相似文献   

9.
目的:检测分析急性力竭运动对大鼠心肌蛋白激酶C(PKC)α、δ和ε亚型总蛋白及其磷酸化蛋白表达的影响。方法:健康雄性SD大鼠50只,随机分为对照组(C组)和急性力竭运动组(AEE组)(n=25),采用一次力竭跑台运动建立急性力竭运动模型,Western blot法检测PKCα、δ和ε总蛋白及其磷酸化蛋白的表达水平。结果:与C组比较,AEE组大鼠心肌PKCα、p-PKCα~(Ser-657)、PKCδ、P-pKCδ~(Thr-507)及PKCε水平均显著升高(P0.0S)。结论:急性力竭运动导致PKCα、PKCδ、PKCε表达水平和PKCα、PKCδ活化水平上调,可能是急性力竭运动导致大鼠心肌损伤的重要因素,三亚型之间的交互作用可能是更重要的因素。  相似文献   

10.
Extracellular superoxide dismutase (EC-SOD) overexpression modulates cellular responses such as tumor cell suppression and is induced by IFNγ. Therefore, we examined the role of EC-SOD in IFNγ-mediated tumor cell suppression. We observed that the dominant-negative protein kinase C delta (PKCδ) suppresses IFNγ-induced EC-SOD expression in both keratinocytes and melanoma cells. Our results also showed that PKCδ-induced ECSOD expression was reduced by pretreatment with a PKCspecific inhibitor or a siRNA against PKCδ. PKCδ-induced ECSOD expression suppressed cell proliferations by the up-regulation of p21 and Rb, and the downregulation of cyclin A and D. Finally, we demonstrated that increased expression of EC-SOD drastically suppressed lung melanoma proliferation in an EC-SOD transgenic mouse via p21 expression. In summary, our findings suggest that IFNγ-induced EC-SOD expression occurs via activation of PKCδ. Therefore, the upregulation of EC-SOD may be effective for prevention of various cancers, including melanoma, via cell cycle arrest. [BMB Reports 2012; 45(11): 659-664]  相似文献   

11.
Previous studies demonstrated α1-adrenergic receptors (ARs) increase STAT3 activation in transfected and non-cardiac primary cell lines. However, the mechanism used by α1-ARs resulting in STAT3 activation is unknown. While other G-protein-coupled receptors (GPCRs) can couple to STAT3, these mechanisms demonstrate coupling through SRC, TYK, Rac, or complex formation with Gq and used only transfected cell lines. Using normal and transgenic mice containing constitutively active mutations (CAM) of the α1A-AR subtype, neonatal mouse myocytes and whole hearts were analyzed for the mechanism to couple to STAT3 activation. α1-ARs stimulated time-dependent increases in p-SRC, p-JAK2, and p-STAT3 in normal neonatal myocytes. Using various kinase inhibitors and siRNA, we determined that the α1A-AR coupled to STAT3 through distinct and unique pathways in neonatal myocytes. We found that PKC? inhibition decreased p-ERK and p-Ser STAT3 levels without affecting p-Tyr STAT3. In contrast, we found that PKCδ inhibition affected p-SRC and p-JAK2 resulting in decreased p-Tyr and p-Ser STAT3 levels. We suggest a novel α1A-AR mediated PKC?/ERK pathway that regulates the phosphorylation status of STAT3 at Ser-727 while PKCδ couples to SRC/JAK2 to affect Tyr-705 phosphorylation. Furthermore, this pathway has not been previously described in a GPCR system that couples to STAT3. Given cell survival and protective cardiac effects induced by PKC, STAT3 and ERK signaling, our results could explain the neuroprotective and cardiac protective pathways that are enhanced with α1A-AR agonism.  相似文献   

12.
目的:探究不同强度的游泳训练对小鼠心肌P66shc蛋白的影响。方法:将50只昆明小鼠随机分为对照组(C组)、负重游泳组(E组)、负重游泳+药物组(ER组)、非负重游泳组(P组)、非负重游泳+药物组(PR组),10只/组。C组不运动,E组、ER组、P组、PR组进行4周游泳训练,其中E组、ER组以体重3%负荷进行负重游泳,P组、PR组无负重游泳,60 min/d,每周6次。ER组、PR组小鼠在最后2次运动前腹腔注射PKCδ抑制剂Rottlerin(0.3 mg/kg),C组、E组、P组注射同等剂量生理盐水。在训练结束24 h后取样,Western blot测定小鼠心肌PKCδ、P-PKCδ、P66shc、P-P66shc、NOX2蛋白表达;免疫共沉淀测PKCδ和P66shc;生化分析心肌及血清丙二醛(MDA)、心肌活性氧(ROS)、超氧化物歧化酶(SOD)。结果:与C组比较,E组的PKCδ、P-PKCδ、P66shc、P-P66shc、NOX2蛋白表达均明显增加(P<0.01),血清和心肌MDA水平、心肌ROS明显增加(P<0.05或P<0.01),心肌SOD活性降低(P<0.01),P组的PKCδ、P-PKCδ、P-P66shc和NOX2明显增加(P<0.05或P<0.01),心肌SOD活性增强(P<0.05);与E组比较,ER组PKCδ(P<0.01)、P-PKCδ(P<0.01)、P66shc(P<0.05)、P-P66shc(P<0.01)、NOX2(P<0.05)蛋白表达明显减少,P组P66shc蛋白表达显著减少(P<0.05),心肌MDA(P<0.01)和ROS(P< 0.05)减少,SOD活性增强(P<0.01);与P组比较,PR组的PKCδ、P-PKCδ、P-P66shc蛋白表达明显减少(P< 0.01),NOX2增加(P<0.05)。结论:两种强度的游泳训练均促使小鼠心肌细胞内PKCδ蛋白及其磷酸化增加;高强度游泳训练可显著增强P66shc蛋白表达及磷酸化水平,导致ROS大量生成,抗氧化酶活性下降;低强度游泳训练增强P66shc磷酸化但不促进其蛋白表达,心肌抗氧化能力增强,产生运动适应。  相似文献   

13.
以巢式PCR扩增急性淋巴细胞白血病细胞中TCRVδ2-Dδ3重排片段,同时将生物素掺入初诊期骨髓标本扩增产物中,标记成患者克隆特异性探针,通过点杂交法检测缓解期患者体内残留的白血病细胞.结果提示该法对于临床病情监测有一定的价值.  相似文献   

14.
The key intermediate, 4-chloro-5-iodo-3-pyridinecarbonitrile, allowed for ready optimization of the PKCθ inhibitory activity of a series of 3-pyridinecarbonitriles. Analog 13b with a 4-methylindol-5-ylamino group at C-4 and a 4-(2-(4-methylpiperazin-1-yl)ethoxy)phenyl group at C-5 had an IC50 value of 7.4 nM for the inhibition of PKCθ.  相似文献   

15.
Liu S  Yuan Q  Zhao S  Wang J  Guo Y  Wang F  Zhang Y  Liu Q  Zhang S  Ling EA  Hao A 《Cellular signalling》2011,23(8):1366-1374
Diabetic-induced neural tube defects in embryos are caused by apoptosis of neural progenitor cells (NPCs); however, the underlying mechanisms are poorly understood. The present study is aimed to investigate the specific cellular proteins that may be involved in apoptosis of NPCs. We show here that hyperglycemia-induced apoptosis of NPCs was through a PKCδ-dependent mechanism. Tyrosine phosphorylation of PKCδ was required for PKCδ binding to c-Abl in the cytoplasm, and inhibition of c-Abl by STI571 or knock-down of c-Abl by RNAi decreased the phosphorylation of PKCδ. Moreover, translocation of PKCδ and c-Abl complex from the cytoplasm to the nucleus, was blocked by down-regulation of PKCδ or c-Abl. Furthermore, we found that interaction of PKCδ and c-Abl played a crucial role in p53 accumulation in the nucleus, which was linked to the apoptosis of NPCs in response to high glucose.  相似文献   

16.
研究发现动脉粥样硬化(atherosclerosis,AS)斑块中巨噬细胞摄取氧化低密度脂蛋白(oxidized low-density lipoprotein, ox-LDL)和巨噬细胞极化等关键变化与失调性自噬关系密切. Wnt5a (wingless-type MMTV integration site family member 5a)在AS病变的富含巨噬细胞区域中高表达,然而Wnt5a是否参与巨噬细胞自噬尚未明确.本研究发现,60 mg/L ox-LDL处理Raw264.7细胞6 h时,自噬标志物LC3Ⅱ/Ⅰ显著增加,p62显著减少,且Wnt5a、PKCδ及STAT3的表达均增加.小分子干扰RNA (small interference RNA,si RNA)敲低Wnt5a后,逆转ox-LDL诱导的LC3Ⅱ/Ⅰ和PKCδ表达,上调p62表达,减少细胞内脂质蓄积. PKCδ抑制剂Rottlerin干预后,LC3Ⅱ/Ⅰ和STAT3减少,p62增加,降低细胞内脂质含量.综上,ox-LDL可能通过Wnt5a/PKCδ信号通路诱导巨噬细胞自噬.因此,深入研究Wnt5a/PKCδ通路在巨噬细胞及AS发生发展中的作用,是研究自噬机制新的着力点,并为药物干预提供新的靶点.  相似文献   

17.
舍格伦综合征(Sjgren's syndrome)是一种自身免疫性疾病,主要特征为淋巴细胞浸润唾液腺和泪腺,表现为眼干和口干等外分泌腺功能障碍。T细胞是浸润唾液腺的主要淋巴细胞,其介导的自身免疫反应在舍格伦综合征的发病机制中起关键作用。  相似文献   

18.
Analog 8, a 3-pyridinecarbonitrile with an (E)-2-{6-[(4-methylpiperazin-1-yl)methyl]pyridin-2-yl}vinyl group at C-5, had an IC50 value of 1.1 nM for the inhibition of PKCθ and potently blocked the production of IL-2 in both stimulated murine T cells (IC50 = 34 nM) and human whole blood (IC50 = 500 nM).  相似文献   

19.

Background

Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor αvβ3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis.

Results

Two melanoma cell lines C8161.9 and M14 both express high levels of αvβ3 integrin and adhere to vitronectin. However, only the highly metastatic C8161.9 cells are capable of invading vitronectin-enriched Matrigel in an αvβ3-depenent manner. Elevated levels of PKCα and PKCδ, and activated Src were detected specifically in the highly metastatic melanoma cells, but not in the low metastatic M14 cells. Inhibition of Src or PKC activity suppressed αvβ3-dependent invasion. Furthermore, over expression of Src or PKCα and PKCδ was sufficient to confer αvβ3-dependent invasiveness to M14 cells. Stress fiber formation and focal adhesion formation were almost completely absent in C8161.9 cells compared to M14 cells. Inhibition of Src signaling was sufficient to restore normal actin architecture, and resulted in decreased p190RhoGAP phosphorylation and enhanced RhoA activity. Src had no effect on Rac activity. Loss of PKCα expression, but not PKCδ, by siRNA inhibited Rac and PAK activity as well as invasiveness. Loss of PKCα restored focal adhesion formation and partially restored stress fiber formation, while loss of PKCδ primarily restored stress fibers.

Conclusion

The misregulated expression of PKCα and PKCδ and elevated Src activity in metastatic melanoma cells is required for efficient αvβ3-mediated invasion. PKCα and Src enhance αvβ3-mediated invasion in part by increasing the GTPase activity of Rac relative to RhoA. PKCα influences focal adhesion formation, while PKCδ controls stress fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号