首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yang SZ  Lin FT  Lin WC 《EMBO reports》2008,9(9):907-915
Microcephalin (MCPH1) has a crucial role in the DNA damage response by promoting the expression of Checkpoint kinase 1 (CHK1) and Breast cancer susceptibility gene 1 (BRCA1); however, the mechanism of this regulation remains unclear. Here, we show that MCPH1 regulates CHK1 and BRCA1 through the interaction with E2F1 on the promoters of both genes. MCPH1 also regulates other E2F target genes involved in DNA repair and apoptosis such as RAD51, DDB2, TOPBP1, p73 and caspases. MCPH1 interacts with E2F1 on the p73 promoter, and regulates p73 induction and E2F1-induced apoptosis as a result of DNA damage. MCPH1 forms oligomers through the second and third BRCT domains. An MCPH1 mutant containing only its oligomerization domain has a dominant-negative role by blocking MCPH1 binding to E2F1. It also inhibits p73 induction in DNA damage and E2F1-dependent apoptosis. Taken together, MCPH1 cooperates with E2F1 to regulate genes involved in DNA repair, checkpoint and apoptosis, and might participate in the maintenance of genomic integrity.  相似文献   

3.
Acute irreparable UV-induced DNA damage leads to apoptosis of epidermal keratinocytes (KC) and the formation of sunburn cells, whereas less severely damaged cells survive but harbor the potential of tumor formation. Here we report that hepatocyte growth factor/scatter factor (HGF/SF) prevents UVB-induced apoptosis in primary KC cultured in vitro. When we analyzed the signaling pathways initiated by the HGF/SF receptor c-met, we found that the phosphatidylinositol (PI) 3-kinase and its downstream-element AKT and the mitogen-activated protein (MAP) kinase were activated. Inhibition of PI 3-kinase led to a complete abrogation of the anti-apoptotic effect of HGF/SF, whereas blockade of the MAP kinase pathway had no effect. In contrast to the observation with primary KC, HGF/SF could not enhance survival after UVB irradiation of HaCaT and A431 cell lines, despite the fact that in these cells the PI 3-kinase and MAP kinase pathways were also activated by HGF/SF. Cell cycle analysis of KC revealed a G(2)/M arrest after UVB irradiation and a complete loss of proliferating cells. Because HGF/SF in the skin is produced by dermal fibroblasts, our findings suggest that the HGF/SF-mediated rescue of KC from apoptosis represents an important paracrine loop by which UVB-damaged KC can be kept alive to maintain the epidermal barrier function but cannot further proliferate, thereby preventing the induction of epithelial skin tumors.  相似文献   

4.
5.
In this study, cutaneous role of IL-4 in UVB-induced apoptosis was investigated using transgenic mice with skin-specific expression of IL-4 (IL-4 Tg mice). The transgenic mice did not show any gross clinical abnormalities. However, epidermis was thickened and increased MHC class II positive cells were detected as well as enhanced expression of inflammatory cytokines such as IL-1 and TNF-alpha in skin. In addition, histological analysis revealed increased infiltration of lymphocytes, acanthosis, hyperkeratosis, and parakeratosis in skin of IL-4 Tg mice. The physiological effect of IL-4 overexpression in skin against environmental stimulus such as UVB was investigated by irradiating wild-type and IL-4 Tg mice with UVB followed by evaluation of apoptosis. The result demonstrated suppressed apoptosis in epidermis of IL-4 Tg mice compared with wild-type mice. To further assess anti-apoptotic function of IL-4 in keratinocytes, stable cell clones were made where IL-4 was constitutively overexpressed and examined for UVB-induced apoptosis. The results showed that apoptosis was remarkably decreased in IL-4 over-expressing cell clones compared with that in mock transfected cells. Collectively, data presented here shows that IL-4 has an inhibitory effect against UVB-induced apoptosis in keratinocytes, suggesting that IL-4 may be an important regulator in cutaneous immunity against UVB.  相似文献   

6.
7.
8.
Interferon-gamma (IFN-gamma) induces various apoptosis-related proteins, including Fas antigen (Fas) in keratinocytes. Ultraviolet B (UVB) irradiation produces "sunburn cells," a specific type of apoptosis. Previously, we reported that IFN-gamma augments Fas-dependent apoptosis of SV40-transformed human keratinocytes (SVHK cells). Caspases are a new class of cysteine proteinases that play an important role in apoptosis. We investigated the mechanism of UVB-induced apoptosis by examining activation of the caspase cascade. UVB irradiation of SVHK cells increased the activities of caspases 1, 3, and 8, which were detected at 3 h, and peak activities occurred at 6 h. Pretreatment of SVHK cells with IFN-gamma significantly increased the activity of caspases 1, 3, and 8. UVB-induced caspase 8 stimulation was significantly suppressed only by caspase 8 inhibitor, while inhibitors of caspases 1, 3, and 8 significantly suppressed UVB-induced caspase 1 stimulation. Caspase 3 and 8 inhibitors, but not caspase 1 inhibitor, significantly suppressed UVB-induced caspase 3 activity, suggesting sequential activation of caspases 8, 3, and 1 in UVB-irradiated SVHK cells. Cross-linking and immunoprecipitation analyses showed multimerization of Fas antigen following UVB irradiation of SVHK cells. Pretreatment of SVHK cells with IFN-gamma significantly augmented UVB-induced apoptosis that was accompanied by increased Fas expression. The susceptibility to UVB-induced apoptosis was also increased in Fas-transfected SVHK cells (F2 cells). Neutralizing anti-Fas antibody significantly suppressed caspase activation and Fas-dependent apoptosis of SVHK cells and F2 cells. In contrast, UVB-induced caspase activation and apoptosis were not inhibited by neutralizing anti-Fas antibody in both cell lines. Our results suggest that UVB directly activates Fas and subsequent caspase cascade resulting in apoptosis of SVHK cells. Furthermore, the expression level of Fas antigen in keratinocytes influenced their susceptibility to UVB-induced apoptosis.  相似文献   

9.
10.
11.
12.
After treatment with ultraviolet radiation (UV), human fibroblasts that express the HPV type 16 E6 oncoprotein display defects in repair of cyclobutane pyrimidine dimers, hypersensitivity to inactivation of clonogenic survival and an inability to sustain DNA replication. To determine whether these effects are specific to depletion of p53 or inactivation of its function , fibroblast lines were constructed with ectopic expression of a dominant-negative p53 allele (p53-H179Q) to inactivate function or a short-hairpin RNA (p53-RNAi) to deplete expression of p53. Only the expression of HPV16E6 sensitized fibroblasts to UV or the chemical carcinogen, benzo[a]pyrene diolepoxide I (BPDE). Carcinogen-treated cells expressing p53-H179Q or p53-RNAi were resistant to inactivation of colony formation and did not suffer replication arrest. CHK1 is a key checkpoint kinase in the response to carcinogen-induced DNA damage. Control and p53-RNAi-expressing fibroblasts displayed phosphorylation of Ser345 on CHK1 45-120 min after carcinogen treatment with a return to near baseline phosphorylation by 6 h after treatment. HPV16E6-expressing fibroblasts displayed enhanced and sustained phosphorylation of CHK1. This was associated with enhanced phosphorylation of Thr68 on CHK2 and Ser139 on H2AX, both markers of severe replication stress and DNA double strand breaks. Incubation with the phosphatase inhibitor okadaic acid produced more phosphorylation of CHK1 in UV-treated HPV16E6-expressing cells than in p53-H179Q-expressing cells suggesting that HPV16E6 may interfere with the recovery of coupled DNA replication at replication forks that are stalled at [6-4]pyrimidine-pyrimidone photoproducts and BPDE-DNA adducts. The results indicate that HPV16E6 targets a protein or proteins other than p53 to deregulate the activity of CHK1 in carcinogen-damaged cells.  相似文献   

13.
Keratinocytes (KC) are important source of and targets for several cytokines. Although KC express IL-15 mRNA, the functional effects of IL-15 on these epithelial cells remain to be dissected. Investigating primary human foreskin KC and HaCaT cells, we show here by semiquantitative RT-PCR and flow cytometric analysis that both translate IL-15 and IL-15R mRNA and express IL-15 and IL-15Ralpha protein on the cell surface, suggesting that human KC can employ IL-15 for juxtacrine signaling. While IL-15 exerted no significant effect on KC proliferation and IL-6 or IL-8 secretion, IL-15 inhibited both anti-Fas and methylcellulose-induced KC apoptosis in vitro. This is in line with the recognized potent anti-apoptotic effects of IL-15. IL-2, whose receptor shares two components with the IL-15R, failed to inhibit KC apoptosis. Together with the role of IL-15 in sustaining chronic immune reactions, this invited the question of whether a reduction of KC apoptosis by IL-15 may be involved in the pathogenesis of psoriasis, a chronic hyperproliferative inflammatory skin disease characterized by abnormally low KC apoptosis in the epidermis. Remarkably, compared with nonlesional psoriatic skin and skin of healthy volunteers, lesional psoriatic epidermis showed high IL-15 protein expression in the epidermis and enhanced binding activity for IL-15. Therefore, antagonizing the inhibitory effects of IL-15 on KC apoptosis deserves exploration as a novel therapeutic strategy in psoriasis management.  相似文献   

14.
15.
Chafuroside B was recently isolated as a new polyphenolic constituent of oolong tea leaves. However, the effects of chafuroside B on skin function have not been examined. In this study, we investigated the protective effects of chafuroside B against UVB-induced DNA damage, apoptosis and generation of photo-immunosuppression related mediators in cultured normal human epidermal keratinocytes (NHEK). Chafuroside B at 1 µM attenuated both UVB-induced apoptosis, evaluated in terms of caspase-3/7 activity, and UVB-induced DNA damage, evaluated in terms of formation of cyclobutane pyrimidine dimers (CPD), in NHEK exposed to UVB (20 mJ/cm2). In addition, chafuroside B at 0.3 or 1 µM suppressed the UVB-induced production of interleukin (IL)-10, tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2), as determined by ELISA, and conversely enhanced IL-12 mRNA expression and production, as measured by RT-PCR and ELISA. Further, chafuroside B at 1 µM also suppressed UVB-induced expression of receptor activator of nuclear factor κB ligand (RANKL) mRNA. These results indicate that chafuroside B promotes repair of UVB-induced DNA damage and ameliorates the generation of IL-10, TNF-α, PGE2, and RANKL, all of which are UVB-induced immunosuppression related mediators. These effects of chafuroside B may be mediated at least in part through induction of IL-12 synthesis in human keratinocytes. Because chafuroside B might have practical value as a photoprotective agent, a further study of the in vivo effects of chafuroside B seems warranted.  相似文献   

16.
17.
18.
19.
Xie W  Jiang P  Miao L  Zhao Y  Zhimin Z  Qing L  Zhu WG  Wu M 《Nucleic acids research》2006,34(7):2046-2055
Deregulated expression of E2F1 not only promotes S-phase entry but also induces apoptosis. Although it has been well documented that E2F1 is able to induce p53-dependent apoptosis via raising ARF activity, the mechanism by which E2F induces p53-independent apoptosis remains unclear. Here we report that E2F1 can directly bind to and activate the promoter of Smac/DIABLO, a mitochondrial proapoptotic gene, through the E2F1-binding sites BS2 (-542 approximately -535 bp) and BS3 (-200 approximately -193 bp). BS2 and BS3 appear to be utilized in combination rather than singly by E2F1 in activation of Smac/DIABLO. Activation of BS2 and BS3 are E2F1-specific, since neither E2F2 nor E2F3 is able to activate BS2 or BS3. Using the H1299 ER-E2F1 cell line where E2F1 activity can be conditionally induced, E2F1 has been shown to upregulate the Smac/DIABLO expression at both mRNA and protein levels upon 4-hydroxytamoxifen treatment, resulting in an enhanced mitochondria-mediated apoptosis. Reversely, reducing the Smac/DIABLO expression by RNA interference significantly diminishes apoptosis induced by E2F1. These results may suggest a novel mechanism by which E2F1 promotes p53-independent apoptosis through directly regulating its downstream mitochondrial apoptosis-inducing factors, such as Smac/DIABLO.  相似文献   

20.
UVB radiation damages keratinocytes, potentially inducing chronic skin damage, cutaneous malignancy, and suppression of the immune system. Naturally occurring agents have been considered for prevention and treatment of various kinds of cancer, including skin cancer. Inositol hexaphosphate (IP6), an antioxidant, is a naturally occurring polyphosphorylated carbohydrate that has shown a strong anticancer activity in several experimental models. We assessed the protective effects of IP6 against UVB irradiationinduced injury and photocarcinogenesis by using HaCaT cells (human immortalized keratinocytes) and SKH1 hairless mice. We found that IP6 counteracts the harmful effects of UVB irradiation and increases the viability and survival of UVB-exposed cells. Treatment with IP6 after UVB irradiation (30 mJ/cm(2)) arrested cells in the G(1) and G(2) M phases while decreasing the S phase of the cell cycle. Treatment with IP6 also decreased UVB-induced apoptosis and caspase 3 activation. Topical application of IP6 followed by exposure to UVB irradiation in SKH1 hairless mice decreased tumor incidence and multiplicity as compared with control mice. Our results suggest that IP6 protects HaCaT cells from UVB-induced apoptosis and mice from UVB-induced tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号