首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Upregulation of miR-34a by p53 is recently believed to be a key mediator in the pro-apoptotic effects of this tumor suppressor. We sought to determine whether restoration of miR-34a levels in p53 deficient cells could rescue the response to DNA damage. Compared with the p53 wildtype U2OS cells, miR-34a expression was much lower in p53 deficient Saos2 cells upon cisplatin treatment. Unexpectedly, delivery of miR-34a in Saos2 cells does not increase the cell sensitivity to apoptosis. This effect was mediated by direct downregulation of SirT1 expression by miR-34a, which in turn increased the NFκB activity. Inhibition of NFκB activity in Saos2 cells by Aspirin sensitized the miR-34a overexpressing cells to cell death. Thus, in tumors with p53 deficiency, miR-34a restoration alone confers drug resistance through Sirt1-NFκB pathway and combination of miR-34a and NFκB inhibitor could be considered as a promising therapeutic strategy.  相似文献   

9.
The role of microRNAs in small-cell lung carcinoma (SCLC) is largely unknown. miR-34a is known as a p53 regulated tumor suppressor microRNA in many cancer types. However, its therapeutic implication has never been studied in SCLC, a cancer type with frequent dysfunction of p53. We investigated the expression of a panel of 7 microRNAs (miR-21, miR-29b, miR-34a/b/c, miR-155, and let-7a) in 31 SCLC tumors, 14 SCLC cell lines, and 26 NSCLC cell lines. We observed significantly lower miR-21, miR-29b, and miR-34a expression in SCLC cell lines than in NSCLC cell lines. The expression of the 7 microRNAs was unrelated to SCLC patients' clinical characteristics and was neither prognostic in term of overall survival or progression-free survival nor predictive of treatment response. Overexpression or downregulation of miR-34a did not influence SCLC cell viability. The expression of these 7 microRNAs also did not predict in vitro sensitivity to cisplatin or etoposide in SCLC cell lines. Overexpression or downregulation of miR-34a did not influence sensitivity to cisplatin or etoposide in SCLC cell lines. In contrast to downregulation of the miR-34a target genes cMET and Axl by overexpression of miR-34a in NSCLC cell lines, the intrinsic expression of cMET and Axl was low in SCLC cell lines and was not influenced by overexpression of miR-34a. Our results suggest that the expression of the 7 selected microRNAs are not prognostic in SCLC patients, and miR-34a is unrelated to the malignant behavior of SCLC cells and is unlikely to be a therapeutic target.  相似文献   

10.
Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity. Developing new therapeutic approaches with neoadjuvant is of great interest in OS treatment. Reportedly, ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and radiation resistance gene 3 related (ATR)-p53 signaling is considered as a critical DNA damage signaling pathway sensitizing cancer cells to chemotherapies; while wild-type p53-induced phosphatase 1 (WIP1), an oncogene overexpressed in diverse cancers, has been regarded as a critical inhibitor in the ATM/ATR-p53 DNA damage signaling pathway. Herein, the expression of WIP1 in OS tissues and cell lines was examined; to investigate the mechanism of WIP1 abnormal upregulation, online tools were used to predict the upstream regulatory microRNAs (miRNAs) targeting WIP1. Among the candidate miRNAs, the expression and detailed function of miR-590 were validated. Through binding to the 3′-untranslated region of WIP1, miR-590 inhibited WIP1 expression and, therefore, enhanced the effect of Dox on OS cell proliferation and apoptosis through downstream ATM-p53 signaling. Moreover, RELA could bind to the promoter region of miR-590 to inhibit its expression, thereby affecting downstream WIP1 and ATM-p53 signaling. The expression of p65 was upregulated in OS tissues, indicating that the effect of p65 inhibition on cell viability, apoptosis, and related mechanisms could be partially restored by miR-590 inhibition. Taken together, these results showed that p65-mediated miR-590/WIP1/ATM-p53 modulation might be a novel target to enhance the cellular effect of Dox on OS cell lines.  相似文献   

11.
12.
13.
14.
15.
The Arf tumor suppressor gene product, p19Arf, regulates cell proliferation in incipient cancer cells and during embryo development. Beyond its commonly accepted p53-dependent actions, p19Arf also acts independently of p53 in both contexts. One such p53-independent effect with in vivo relevance includes its repression of Pdgfrβ, a process that is essential for vision in the mouse. We have utilized cell culture-based and mouse models to define a new role for miR-34a in this process. Ectopic expression of Arf in cultured cells enhanced the expression of several microRNAs predicted to target Pdgfrß synthesis, including the miR-34 family. Because miR-34a has been implicated as a p53-dependent effector, we investigated whether it also contributed to p53-independent effects of p19Arf. Indeed, in mouse embryo fibroblasts (MEFs) lacking p53, Arf-driven repression of Pdgfrβ and its blockade of Pdgf-B stimulated DNA synthesis were both completely interrupted by anti-microRNA against miR-34a. Ectopic miR-34a directly targeted Pdgfrβ and a plasmid reporter containing wild-type Pdgfrβ 3′UTR sequence, but not one in which the miR-34a target sequence was mutated. Although miR-34a expression has been linked to p53—a well-known effector of p19ArfArf expression and its knockdown correlated with miR-34a level in MEFs lacking p53. Finally, analysis of the mouse embryonic eye demonstrated that Arf controlled expression of miR-34a, and the related miR-34b and c, in vivo during normal mouse development. Our findings indicate that miR-34a provides an essential link between p19Arf and its p53-independent capacity to block cell proliferation driven by Pdgfrβ. This has ramifications for developmental and tumor suppressor roles of Arf.  相似文献   

16.
Increasing evidence has confirmed that microRNAs (miRs) are involved in tumor development and progression. A previous study reported that miR-421 could serve as a diagnostic marker in patients with osteosarcoma (OS). The present study explored the potential roles of miR-421 in the regulation of cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition of OS cells. Our results showed that miR-421 was upregulated in OS tissues and cell lines (MG63, U2OS, HOS, and Saos-2) compared with the corresponding adjacent tissues or human osteoblast cells hFOB1.19, while the latent transforming growth factor β-binding protein 2 (LTBP2) expression was reduced. In MG63 and U2OS cells, CCK8 assay displayed that cell proliferation was repressed by the miR-421 inhibitor, conversely increased by miR-421 mimics. Inhibition of miR-421 promoted cell apoptosis rate, caspase 3 activity, cleaved-caspase 3 (c-caspase 3) expression, and Bax/Bcl-2 ratio, restoration of miR-421 showed the opposite functions. Suppression of miR-421 blocked migration and invasion, whereas miR-421 overexpression promoted the migration and invasion of MG63 and U2OS cells. In addition, real-time polymerase chain reaction and Western blot analysis revealed that miR-421 negatively regulated E-cadherin expression, and positively regulated the expression of N-cadherin and vimentin. The luciferase reporter assay determined that miR-421 could target LTBP2-3′-UTR, and LTBP2 expression was regulated negatively by miR-421 both in mRNA and protein levels. Depletion of LTBP2 partly abolished the biological functions of miR-421 inhibitor in OS. In conclusion, miR-421 plays an oncogenic role in OS via targeting LTBP2, suggesting that miR-421 may be a potential therapeutic target against OS.  相似文献   

17.
Chronic lymphocytic leukemia (CLL) has an incidence 4/100 000 people in the western world and is one of the first cancers reported to be associated with deregulated miRNA expression. microRNAs are small non coding RNAs that are important regulators of protein expression through binding to their untranslated 3'-UTR region. The miR-34 family was demonstrated to be induced by the tumor suppressor p53 and to elicit p53-like responses like senescence, cell cycle arrest and apoptosis depending on the cell type. We have shown in a recent paper that miR-34a is severely increased in the TCL1-mouse model of CLL. This finding was reflected in human CLL. Moreover, it is demonstrated that its expression is dependent on the presence of the SNP309 in the intronic promoter of the MDM2 gene. In addition, low miR-34a expression was associated with shorter time to treatment (log-rank P = 0.003) in CLL. When reintroduced into CLL cells, miR-34a was able to induce apoptosis. Interestingly, this was dependent on an intact p53 pathway. Here, we present data showing that knockdown of p53 in HCT-116 cells severely reduces miR-34a induced apoptosis. In conclusion, miR-34a is proposed as a marker for the activity of the p53 pathway in CLL.  相似文献   

18.
microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3′-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.  相似文献   

19.
20.
Restoring p53 activity by inhibiting the interaction between p53 and the mouse double minutes clone 2 (MDM2) offers an attractive approach to cancer therapy. Nutlin-3a is a small-molecule inhibitor that inhibits MDM2 binding to p53 and subsequent p53-dependent DNA damage signaling. In this study, we determined the efficacy of Nutlin-3a in inducing p53-mediated cell death in osteosarcoma (OS) cell lines both in vivo and in vitro. Targeted disruption of the p53-MDM2 interaction by Nutlin-3a stabilizes p53 and selectively activates the p53 pathway only in OS cells with wild-type p53, resulting in a pronounced anti-proliferative and cytotoxic effect due to G1 cell cycle arrest and apoptosis both in vitro and in vivo. p53 dependence of these alternative outcomes of Nutlin-3a treatment was shown by the abrogation of these effects when p53 was knocked-down by small interfering RNA. These data suggest that the disruption of p53-MDM2 interaction by Nutlin-3a might be beneficial for OS patients with MDM2 amplification and wt p53 status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号