首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FtsZ is an ancestral homologue of tubulin that polymerizes in a GTP-dependent manner. In this study, we used 90° angle light scattering to investigate FtsZ polymerization. The critical concentration for polymerization obtained by this method is similar to that obtained by centrifugation, confirming that the light scattering is proportional to polymer mass. Furthermore, the dynamics of FtsZ polymerization could be readily monitored by light scattering. Polymerization was very rapid, reaching steady state within 30 s. The length of the steady-state phase was proportional to the GTP concentration and was followed by a rapid decrease in light scattering. This decrease indicated net depolymerization that always occurred as the GTP in the reaction was consumed. FtsZ polymerization was observed over the pH range 6.5 to 7.9. Importantly, Mg2+ was not required for polymerization although it was required for the dynamic behavior of the polymers. It was reported that 7 to 25 mM Ca2+ mediated dynamic assembly of FtsZ (X.-C. Yu and W. Margolin, EMBO J. 16:5455–5463, 1997). However, we found that Ca2+ was not required for FtsZ assembly and that this concentration of Ca2+ reduced the dynamic behavior of FtsZ assembly.  相似文献   

2.
Huecas S  Andreu JM 《FEBS letters》2004,569(1-3):43-48
Stable, more than 98% nucleotide-free apo-FtsZ was prepared from purified Methanococcus jannaschhi FtsZ. This facilitates the study of the functional mechanisms of this FtsZ, an assembling GTPase, which shares a common fold with eukaryotic tubulin. Apo-FtsZ underwent cooperative magnesium-induced polymerization with a similar critical concentration and morphology related to that of reconstituted GTP-bound FtsZ, suggesting that the binding of GTP contributes insignificantly to the stability of the FtsZ polymers. On the other hand, reconstituted GDP-FtsZ polymerized with a larger critical concentration than GTP-FtsZ, indicating that GDP binding destabilizes FtsZ polymers. Upon GTP hydrolysis by FtsZ polymers, in the absence of a continued GTP supply and under macromolecular crowding conditions enhancing FtsZ polymerization, the straight GTP polymers disappeared and were replaced by characteristic helically curved GDP-bound polymers. These results suggest that the roles of GTP binding and hydrolysis by this archaeal FtsZ are simply to facilitate disassembly. In a physiological situation in GTP excess, GDP-bound FtsZ subunits could again bind GTP, or trigger disassembly, or be recognized by FtsZ filament depolymerizing proteins, allowing the Z-ring dynamics during prokaryotic cell division.  相似文献   

3.
The assembly of the bacterial cell division FtsZ protein in the presence of constantly replenished GTP was studied as a function of Mg(2+) concentration (at neutral pH and 0.5 M potassium) under steady-state conditions by sedimentation velocity, concentration-gradient light scattering, fluorescence correlation spectroscopy, and dynamic light scattering. Sedimentation velocity measurements confirmed previous results indicating cooperative appearance of a narrow size distribution of finite oligomers with increasing protein concentration. The concentration dependence of light scattering and diffusion coefficients independently verified the cooperative appearance of a narrow distribution of high molecular weight oligomers, and in addition provided a measurement of the average size of these species, which corresponds to 100 ± 20 FtsZ protomers at millimolar Mg(2+) concentration. Parallel experiments on solutions containing guanosine-5'-[(α,β)-methyleno]triphosphate, sodium salt (GMPCPP), a slowly hydrolyzable analogue of GTP, in place of GTP, likewise indicated the concerted formation of a narrow size distribution of fibrillar oligomers with a larger average mass (corresponding to 160 ± 20 FtsZ monomers). The closely similar behavior of FtsZ in the presence of both GTP and GMPCPP suggests that the observations reflect equilibrium rather than nonequilibrium steady-state properties of both solutions and exhibit parallel manifestations of a common association scheme.  相似文献   

4.

Introduction

Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation.

Methods

Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively.

Results

NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK’s NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK.

Conclusion

Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.  相似文献   

5.
The self-assembly of the tubulin homologue FtsZ at the mid-cell is a critical step in bacterial cell division. We introduce dynamic light scattering (DLS) spectroscopy as a new method to study the polymerization kinetics of FtsZ in solution. Analysis of the DLS data indicates that the FtsZ polymers are remarkably monodisperse in length, independent of the concentrations of GTP, GDP, and FtsZ monomers. Measurements of the diffusion coefficient of the polymers demonstrate that their length is remarkably stable until the free GTP is consumed. We estimated the mean size of the FtsZ polymers within this interval of stable length to be between 9 and 18 monomers. The rates of FtsZ polymerization and depolymerization are likely influenced by the concentration of GDP, as the repeated addition of GTP to FtsZ increased the rate of polymerization and slowed down depolymerization. Increasing the FtsZ concentration did not change the size of FtsZ polymers; however, it increased the rate of the depolymerization reaction by depleting free GTP. Using transmission electron microscopy we observed that FtsZ forms linear polymers in solutions which rapidly convert to large bundles upon contact with surfaces at time scales as short as several seconds. Finally, the best studied small molecule that binds to FtsZ, PC190723, had no stabilizing effect on Caulobacter crescentus FtsZ filaments in vitro, which complements previous studies with Escherichia coli FtsZ and confirms that this class of small molecules binds Gram-negative FtsZ weakly.  相似文献   

6.
The interaction of MinC with FtsZ and its effects on FtsZ polymerization were studied under close to physiological conditions by a combination of biophysical methods. The Min system is a widely conserved mechanism in bacteria that ensures the correct placement of the division machinery at midcell. MinC is the component of this system that effectively interacts with FtsZ and inhibits the formation of the Z-ring. Here we report that MinC produces a concentration-dependent reduction in the size of GTP-induced FtsZ protofilaments (FtsZ-GTP) as demonstrated by analytical ultracentrifugation, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. Our experiments show that, despite being shorter, FtsZ protofilaments maintain their narrow distribution in size in the presence of MinC. The protein had the same effect regardless of its addition prior to or after FtsZ polymerization. Fluorescence anisotropy measurements indicated that MinC bound to FtsZ-GDP with a moderate affinity (apparent KD ∼10 μm at 100 mm KCl and pH 7.5) very close to the MinC concentration corresponding to the midpoint of the inhibition of FtsZ assembly. Only marginal binding of MinC to FtsZ-GTP protofilaments was observed by analytical ultracentrifugation and fluorescence correlation spectroscopy. Remarkably, MinC effects on FtsZ-GTP protofilaments and binding affinity to FtsZ-GDP were strongly dependent on ionic strength, being severely reduced at 500 mm KCl compared with 100 mm KCl. Our results support a mechanism in which MinC interacts with FtsZ-GDP, resulting in smaller protofilaments of defined size and having the same effect on both preassembled and growing FtsZ protofilaments.  相似文献   

7.
GTP:adenosylcobinamide-phosphate (AdoCbi-P) guanylyl transferase (CobY) is an enzyme that transfers the GMP moiety of GTP to AdoCbi yielding AdoCbi-GDP in the late steps of the assembly of Ado-cobamides in archaea. The failure of repeated attempts to crystallize ligand-free (apo) CobY prompted us to explore its 3D structure by solution NMR spectroscopy. As reported here, the solution structure has a mixed α/β fold consisting of seven β-strands and five α-helices, which is very similar to a Rossmann fold. Titration of apo-CobY with GTP resulted in large changes in amide proton chemical shifts that indicated major structural perturbations upon complex formation. However, the CobY:GTP complex as followed by 1H-15N HSQC spectra was found to be unstable over time: GTP hydrolyzed and the protein converted slowly to a species with an NMR spectrum similar to that of apo-CobY. The variant CobYG153D, whose GTP complex was studied by X-ray crystallography, yielded NMR spectra similar to those of wild-type CobY in both its apo- state and in complex with GTP. The CobYG153D:GTP complex was also found to be unstable over time.  相似文献   

8.
Treadmilling protein filaments perform essential cellular functions by growing from one end while shrinking from the other, driven by nucleotide hydrolysis. Bacterial cell division relies on the primitive tubulin homolog FtsZ, a target for antibiotic discovery that assembles into single treadmilling filaments that hydrolyse GTP at an active site formed upon subunit association. We determined high-resolution filament structures of FtsZ from the pathogen Staphylococcus aureus in complex with different nucleotide analogs and cations, including mimetics of the ground and transition states of catalysis. Together with mutational and biochemical analyses, our structures reveal interactions made by the GTP γ-phosphate and Mg2+ at the subunit interface, a K+ ion stabilizing loop T7 for co-catalysis, new roles of key residues at the active site and a nearby crosstalk area, and rearrangements of a dynamic water shell bridging adjacent subunits upon GTP hydrolysis. We propose a mechanistic model that integrates nucleotide hydrolysis signaling with assembly-associated conformational changes and filament treadmilling. Equivalent assembly mechanisms may apply to more complex tubulin and actin cytomotive filaments that share analogous features with FtsZ.

Bacterial cell division critically relies on the tubulin homolog FtsZ, which assembles into filaments that treadmill, fuelled by GTP hydrolysis. This structural and biochemical study of FtsZ from Staphylocuccus aureus reveals the mechanism of GTP hydrolysis and its connection with filament dynamics.  相似文献   

9.
Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ.  相似文献   

10.
Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.  相似文献   

11.
Prokaryotic cell division protein FtsZ, an assembling GTPase, directs the formation of the septosome between daughter cells. FtsZ is an attractive target for the development of new antibiotics. Assembly dynamics of FtsZ is regulated by the binding, hydrolysis, and exchange of GTP. We have determined the energetics of nucleotide binding to model apoFtsZ from Methanococcus jannaschii and studied the kinetics of 2'/3'-O-(N-methylanthraniloyl) (mant)-nucleotide binding and dissociation from FtsZ polymers, employing calorimetric, fluorescence, and stopped-flow methods. FtsZ binds GTP and GDP with K(b) values ranging from 20 to 300 microm(-1) under various conditions. GTP.Mg(2+) and GDP.Mg(2+) bind with slightly reduced affinity. Bound GTP and the coordinated Mg(2+) ion play a minor structural role in FtsZ monomers, but Mg(2+)-assisted GTP hydrolysis triggers polymer disassembly. Mant-GTP binds and dissociates quickly from FtsZ monomers, with approximately 10-fold lower affinity than GTP. Mant-GTP displacement measured by fluorescence anisotropy provides a method to test the binding of any competing molecules to the FtsZ nucleotide site. Mant-GTP is very slowly hydrolyzed and remains exchangeable in FtsZ polymers, but it becomes kinetically stabilized, with a 30-fold slower k(+) and approximately 500-fold slower k(-) than in monomers. The mant-GTP dissociation rate from FtsZ polymers is comparable with the GTP hydrolysis turnover and with the reported subunit turnover in Escherichia coli FtsZ polymers. Although FtsZ polymers can exchange nucleotide, unlike its eukaryotic structural homologue tubulin, GDP dissociation may be slow enough for polymer disassembly to take place first, resulting in FtsZ polymers cycling with GTP hydrolysis similarly to microtubules.  相似文献   

12.
Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orientation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open and closed interfaces between monomers. We identify a coordinated Mg2+ ion as the key structural element in closing the nucleotide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which involves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermonomer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ monomers.  相似文献   

13.
Microtubules are not like other polymers. Whereas polymers such as F-actin will grow continuously as long as the subunit concentration is high enough, a steadily growing microtubule can suddenly shrink even when there is ample αβ-tubulin around. This remarkable behavior was discovered in 1984 when Tim Mitchison and Marc Kirschner deduced that microtubules switch from growth to shrinkage when they lose their GTP caps. Here, I review the canonical explanation of dynamic instability that was fleshed out in the years after its discovery. Many aspects of this explanation have been recently subverted, particularly those related to how GTP-tubulin forms polymers and why GTP hydrolysis disrupts them. I describe these developments and speculate on how our explanation of dynamic instability can be changed to accommodate them.  相似文献   

14.
Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orientation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open and closed interfaces between monomers. We identify a coordinated Mg2+ ion as the key structural element in closing the nucleotide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which involves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermonomer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ monomers.  相似文献   

15.
Electrospinning is an effective processing method for preparing nanofibers decorated with functional groups. Nanofibers decorated with functional groups may be utilized to study material-biomarker interactions i.e. act as biosensors with potential as single molecule detectors. We have developed an effective approach for preparing functional polymers where the functionality has the capacity of specifically binding with a model protein. In our model system, the functional group is 2,4-dinitrophenyl (DNP) and the protein is anti-DNP IgE (Immunoglobulin E). The functional polymer, α,ω-bi[2,4-dinitrophenyl caproic][poly(ethylene oxide)-b-poly(2-methoxystyrene)-b-poly(ethylene oxide)] (CDNP-PEO-P2MS-PEO-CDNP), is prepared by anionic living polymerization. The difunctional initiator utilized in the polymerization was prepared by electron transfer reaction of α-methylstyrene and potassium (mirror) metal. The 2-methoxystyrene monomer was added first to the initiator, followed by the addition of the second monomer, ethylene oxide, and finally the living polymer was terminated by methanol. The α,ω-dihydroxyl polymer [HO-PEO-P2MS-PEO-OH] was reacted with N-2,4-DNP-∈-amino caproic acid, by DCC coupling, resulting in the formation of α,ω-bi[2,4-dinitrophenylcaproic][poly(ethyleneoxide)-b-poly(2-methoxystyrene)-b-poly(ethylene oxide)] (CDNP-PEO-P2MS-PEO-CDNP). The polymers were characterized by FT-IR, 1H NMR and Gel Permeation Chromatography (GPC). The molecular weight distributions of the polymers were narrow (1.1-1.2) and polymers with molecular weights greater than 50,000 was used in this study. The polymers were yellow powders and soluble in tetrahydrofuran. A water soluble CDNP-PEO-P2MS-PEO-CDNP/ DMEG (dimethoxyethylene glycol) complex binds and achieves steady state binding with solution IgE within a few seconds. Higher molecular weight (water insoluble i.e. around 50,000) CDNP-PEO-P2MS-PEO-CDNP polymers, containing 1% single wall carbon nanotubes (SWCNT) were processed into electroactive nanofibers (100 nm to 500 nm in diameter) on silicon substrate. Fluorescence spectroscopy shows that anti-DNP IgE interacts with the nanofibers by binding with the DNP functional groups decorating the fibers. These observations suggest that appropriately functionalized nanofibers hold promise for developing biomarker detection device.  相似文献   

16.
Euglena gracilis cells synthesize the key tetrapyrrole precursor, δ-aminolevulinic acid (ALA), by two routes: plastid ALA is formed from glutamate via the transfer RNA-dependent five-carbon route, and ALA that serves as the precursor to mitochondrial hemes is formed by ALA synthase-catalyzed condensation of succinyl-coenzyme A and glycine. The biosynthetic source of succinyl-coenzyme A in Euglena is of interest because this species has been reported not to contain α-ketoglutarate dehydrogenase and not to use succinyl-coenzyme A as a tricarboxylic acid cycle intermediate. Instead, α-ketoglutarate is decarboxylated to form succinic semialdehyde, which is subsequently oxidized to form succinate. Desalted extract of Euglena cells catalyzed ALA formation in a reaction that required coenzyme A and GTP but did not require exogenous succinyl-coenzyme A synthetase. GTP could be replaced with ATP. Cell extract also catalyzed glycine-and α-ketoglutarate-dependent ALA formation in a reaction that required coenzyme A and GTP, was stimulated by NADP+, and was inhibited by NAD+. Succinyl-coenzyme A synthetase activity was detected in extracts of dark- and light-grown wild-type and nongreening mutant cells. In vitro succinyl-coenzyme A synthetase activity was at least 10-fold greater than ALA synthase activity. These results indicate that succinyl-coenzyme A synthetase is present in Euglena cells. Even though the enzyme may play no role in the transformation of α-ketoglutarate to succinate in the atypical tricarboxylic acid cycle, it catalyzes succinyl-coenzyme A formation from succinate for use in the biosynthesis of ALA and possibly other products.  相似文献   

17.
Catalytic subunits (C) of uterine smooth-muscle adenylate cyclase were activated (C*) by incubating the enzyme with the GTP analogue guanosine 5′-[βγ-imido]triphosphate (p[NH]ppG), followed by treatment with GTP and washing at 2°C. Activation (C→C*) proceeded in a time- and temperature-dependent manner as disclosed by subsequent assay of the pretreated particles at 37°C. The properties of the activated subunits were a function of the pretreatment temperature and not those of the enzyme assay performed at 37°C. Over the range 6–24°C, activation by pretreatment with p[NH]ppG followed simple Michaelis–Menten kinetics, and increase in temperature increased the concentration of catalytic subunits in the C* state and decreased Km for the guanosine nucleotide. Characterization of the temperature-dependent effects of pretreatment with p[NH]ppG suggested that activation of the catalytic subunit at the temperature in situ (37°C) was moderately endergonic (ΔH0 ~8kJ·mol−1) and accompanied by an increase in entropy (ΔS0 ~146J·mol−1·K−1). The β-adrenergic catecholamine receptor, reflected by isoproterenol's effect on activation by pretreatment with p[NH]ppG, increased the concentration of catalytic subunits in the C* state but had an insignificant (P>0.05) effect on the Km at every temperature. This result suggested that formation of the receptor–hormone complex produced an increase in the first-order rate constant without an appreciable effect on the actual catalytic-subunit activation step. The primary function of the β-adrenergic catecholamine receptor under these conditions appeared to be regulation of the concentration of activation sites available for binding of p[NH]ppG.  相似文献   

18.
In Escherichia coli cell division is driven by the tubulin-like GTPase, FtsZ, which forms the cytokinetic Z-ring. The Z-ring serves as a dynamic platform for the assembly of the multiprotein divisome, which catalyzes membrane cleavage to create equal daughter cells. Several proteins effect FtsZ assembly, thereby providing spatiotemporal control over cell division. One important class of FtsZ interacting/regulatory proteins is the Z-ring-associated proteins, Zaps, which typically modulate Z-ring formation by increasing lateral interactions between FtsZ protofilaments. Strikingly, these Zap proteins show no discernable sequence similarity, suggesting that they likely harbor distinct structures and mechanisms. The 19.8-kDa ZapC in particular shows no homology to any known protein. To gain insight into ZapC function, we determined its structure to 2.15 Å and performed genetic and biochemical studies. ZapC is a monomer composed of two domains, an N-terminal α/β region and a C-terminal twisted β barrel-like domain. The structure contains two pockets, one on each domain. The N-domain pocket is lined with residues previously implicated to be important for ZapC function as an FtsZ bundler. The adjacent C-domain pocket contains a hydrophobic center surrounded by conserved basic residues. Mutagenesis analyses indicate that this pocket is critical for FtsZ binding. An extensive FtsZ binding surface is consistent with the fact that, unlike many FtsZ regulators, ZapC binds the large FtsZ globular core rather than C-terminal tail, and the presence of two adjacent pockets suggests possible mechanisms for ZapC-mediated FtsZ bundling.  相似文献   

19.
The anticoagulant vitamin K-dependent protein S (PS) circulates in plasma in two forms, 30% free and 70% being bound to the complement regulatory protein C4b-binding protein (C4BP). The major C4BP isoform consists of 7 α-chains and 1 β-chain (C4BPβ+), the chains being linked by disulfide bridges. PS binds to the β-chain with high affinity. In plasma, PS is in molar excess over C4BPβ+ and due to the high affinity, all C4BPβ+ molecules contain a bound PS. Taken together with the observation that PS-deficient patients have decreased levels of C4BPβ+, this raises the question of whether PS is important for secretion of the β-chain from the cell. To test this hypothesis, HEK293 cells were stably and transiently transfected with β-chain cDNA in combinations with cDNAs for PS and/or the α-chain. The concentration of β-chains in the medium increased after co-transfection with PS cDNA, but not by α-chain cDNA, suggesting secretion of the β-chains from the cells to be dependent on concomitant synthesis of PS, but not of the α-chains. Thus, β-chains that were not disulfide-linked to the α-chains were secreted in complex with PS, either as monomers or dimers. Pulse-chase demonstrated that the complexes between PS and β-chain were formed intracellularly, in the endoplasmic reticulum. In conclusion, our results demonstrate that successful secretion of β-chains depends on intracellular complex formation with PS, but not on the α-chains. This provides an explanation for the decreased β-chain levels observed in PS-deficient patients.  相似文献   

20.
GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen–deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号