首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lumbrokinase gene encoding a blood-clot dissolving protein was cloned from earthworm (Eisenia fetida) by RT-PCR amplification. The gene designated as CST1 (GenBank No. AY840996) was sequence analyzed. The cDNA consists of 888 bp with an open reading frame of 729 bp, which encodes 242 amino acid residues. Multiple sequence alignments revealed that CST1 shares similarities and conserved amino acids with other reported lumbrokinases. The amino acid sequence of CST1 exhibits structural features similar to those found in other serine proteases, including human tissue-type (tPA), urokinase (uPA), and vampire bat (DSPAα1) plasminogen activators. CST1 has a conserved catalytic triad, found in the active sites of protease enzymes, which are important residues involved in polypeptide catalysis. CST1 was expressed as inclusion bodies in Escherichia coli BL21(DE3). The molecular mass of recombinant CST1 (rCST) was 25 kDa as estimated by SDS–PAGE, and further confirmed by Western Blot analysis. His-tagged rCST1 was purified and renatured using nickel-chelating resin with a recovery rate of 50% and a purity of 95%. The purified, renatured rCST1 showed fibrinolytic activity evaluated by both a fibrin plate and a blood clot lysis assay. rCST1 degraded fibrin on the fibrin plate. A significant percentage (65.7%) of blood clot lysis was observed when blood clot was treated with 80 mg/mL of rCST1 in vitro. The antithrombotic activity of rCST1 was 912 units/mg calculated by comparison with the activity of a lumbrokinase standard. These findings indicate that rCST1 has potential as a potent blood-clot treatment. Therefore, the expression and purification of a single lumbrokinase represents an important improvement in the use of lumbrokinases.  相似文献   

2.
Tularemia is caused by a gram-negative, intracellular bacterial pathogen, Francisella tularensis (Ft). The history weaponization of Ft in the past has elevated concerns that it could be used as a bioweapon or an agent of bioterrorism. Since the discovery of Ft, three broad approaches adopted for tularemia vaccine development have included inactivated, live attenuated, or subunit vaccines. Shortcomings in each of these approaches have hampered the development of a suitable vaccine for prevention of tularemia. Recently, we reported an oxidant sensitive mutant of Ft LVS in putative EmrA1 (FTL_0687) secretion protein. The emrA1 mutant is highly sensitive to oxidants, attenuated for intramacrophage growth and virulence in mice. We reported that EmrA1 contributes to oxidant resistance by affecting the secretion of antioxidant enzymes SodB and KatG. This study investigated the vaccine potential of the emrA1 mutant in prevention of respiratory tularemia caused by Ft LVS and the virulent SchuS4 strain in C57BL/6 mice. We report that emrA1 mutant is safe and can be used at an intranasal (i. n.) immunization dose as high as 1x106 CFU without causing any adverse effects in immunized mice. The emrA1 mutant is cleared by vaccinated mice by day 14–21 post-immunization, induces minimal histopathological lesions in lungs, liver and spleen and a strong humoral immune response. The emrA1 mutant vaccinated mice are protected against 1000–10,000LD100 doses of i.n. Ft LVS challenge. Such a high degree of protection has not been reported earlier against respiratory challenge with Ft LVS using a single immunization dose with an attenuated mutant generated on Ft LVS background. The emrA1 mutant also provides partial protection against i.n. challenge with virulent Ft SchuS4 strain in vaccinated C57BL/6 mice. Collectively, our results further support the notion that antioxidants of Ft may serve as potential targets for development of effective vaccines for prevention of tularemia.  相似文献   

3.
Invertebrates rely solely on the innate immune system for defense against pathogens and other stimuli. Fatty acid binding proteins (FABP), members of the lipid binding proteins superfamily, play a crucial role in fatty acid transport and lipid metabolism and are also involved in gene expression induced by fatty acids. In the vertebrate immune system, FABP is involved in inflammation regulated by fatty acids through its interaction with peroxidase proliferator activate receptors (PPARs). However, the immune functions of FABP in invertebrates are not well characterized. For this reason, we investigated the immune functionality of two fatty acid binding proteins, Es-FABP9 and Es-FABP10, following lipopolysaccharide (LPS) challenge in the Chinese mitten crab (Eriocheir sinensis). An obvious variation in the expression of Es-FABP9 and Es-FABP10 mRNA in E. sinensis was observed in hepatopancreas, gills, and hemocytes post-LPS challenge. Recombinant proteins rEs-FABP9 and rEs-FABP10 exhibited distinct bacterial binding activity and bacterial agglutination activity against Escherichia coli and Staphylococcus aureus. Furthermore, bacterial growth inhibition assays demonstrated that rEs-FABP9 responds positively to the growth inhibition of Vibrio parahaemolyticuss and S. aureus, while rEs-FABP10 responds positively to the growth inhibition of Aeromonas hydrophila and Bacillus subtilis. Coating of agarose beads with recombinant rEs-FABP9 and rEs-FABP10 dramatically enhanced encapsulation of the beads by crab hemocytes in vitro. In conclusion, the data presented here demonstrate the participation of these two lipid metabolism-related proteins in the innate immune system of E. sinensis.  相似文献   

4.
B1 cells, a subset of B lymphocytes whose developmental origin, phenotype, and function differ from that of conventional B2 cells, are the main source of “natural” IgM but can also respond to infection by rapidly producing pathogen-specific IgM directed against T-independent antigens. Francisella tularensis (Ft) is a Gram-negative bacterium that causes tularemia. Infection with Ft Live Vaccine Strain activates B1 cells for production of IgM directed against the bacterial LPS in a process incompletely understood. Here we show that immunization with purified Ft LPS elicits production of LPS-specific IgM and IgG3 by B1 cells independently of TLR2 or MyD88. Immunization, but not infection, generated peritoneum-resident memory B1 cells that differentiated into LPS-specific antibody secreting cells (ASC) upon secondary challenge. IL-5 was rapidly induced by immunization with Ft LPS and was required for production of LPS-specific IgM. Antibody-mediated depletion of ILC2 indicated that these cells were the source of IL-5 and were required for IgM production. IL-25, an alarmin that strongly activates ILC2, was rapidly secreted in response to immunization or infection and its administration to mice significantly increased IgM production and B1 cell differentiation to ASC. Conversely, mice lacking IL-17RB, the IL-25 receptor, showed impaired IL-5 induction, IgM production, and B1 ASC differentiation in response to immunization. Administration of IL-5 to Il17rb-/- mice rescued these B1 cells-mediated responses. Il17rb-/- mice were more susceptible to infection with Ft LVS and failed to develop immunity upon secondary challenge suggesting that LPS-specific IgM is one of the protective adaptive immune mechanisms against tularemia. Our results indicated that immunization with Ft LPS triggers production of IL-25 that, through stimulation of IL-5 release by ILC2, promotes B1 cells activation and differentiation into IgM secreting cells. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against T-independent bacterial antigens.  相似文献   

5.
S100 proteins are low molecular weight calcium binding proteins expressed in vertebrates. The family constitutes 21 known members that are expressed in several tissues and cell types and play a major role in various cellular functions. Uniquely, members of the S100 family have both intracellular and extracellular functions. Several members of the S100 family (S100A1, S100A2, S100A4, S1008, S100A9, S100A11, and S100B) have been identified in human articular cartilage, and their expression is upregulated in diseased tissue. These S100 proteins elicit a catabolic signaling pathway via receptor for advanced glycation end products (RAGE) in cartilage and may promote progression of arthritis. This review summarizes our current understanding of the role of S100 proteins in cartilage biology and in the development of arthritis.  相似文献   

6.
7.
Francisella tularensis (Ft) is a highly infectious intracellular pathogen and the causative agent of tularemia. Because Ft can be dispersed via small droplet-aerosols and has a very low infectious dose it is characterized as a category A Select Agent of biological warfare. Respiratory infection with the attenuated Live Vaccine Strain (LVS) and the highly virulent SchuS4 strain of Ft engenders intense peribronchiolar and perivascular inflammation, but fails to elicit select pro-inflammatory mediators (e.g., TNF, IL-1β, IL-6, IL-12, and IFN-γ) within the first ∼72 h. This in vivo finding is discordant with the principally TH1-oriented response to Ft frequently observed in cell-based studies wherein the aforementioned cytokines are produced. An often overlooked confounding factor in the interpretation of experimental results is the influence of environmental cues on the bacterium''s capacity to elicit certain host responses. Herein, we reveal that adaptation of Ft to its mammalian host imparts an inability to elicit select pro-inflammatory mediators throughout the course of infection. Furthermore, in vitro findings that non-host adapted Ft elicits such a response from host cells reflect aberrant recognition of the DNA of structurally-compromised bacteria by AIM2-dependent and -independent host cell cytosolic DNA sensors. Growth of Ft in Muller-Hinton Broth or on Muller-Hinton-based chocolate agar plates or genetic mutation of Ft was found to compromise the structural integrity of the bacterium thus rendering it capable of aberrantly eliciting pro-inflammatory mediators (e.g., TNF, IL-1β, IL-6, IL-12, and IFN-γ). Our studies highlight the profound impact of different growth conditions on host cell response to infection and demonstrate that not all in vitro-derived findings may be relevant to tularemia pathogenesis in the mammalian host. Rational development of a vaccine and immunotherapeutics can only proceed from a foundation of knowledge based upon in vitro findings that recapitulate those observed during natural infection.  相似文献   

8.
Release of endogenous damage associated molecular patterns (DAMPs), including members of the S100 family, are associated with infection, cellular stress, tissue damage and cancer. The extracellular functions of this family of calcium binding proteins, particularly S100A8, S100A9 and S100A12, are being delineated. They appear to mediate their functions via receptor for advanced glycation endproducts (RAGE) or TLR4, but there remains considerable uncertainty over the relative physiological roles of these DAMPs and their pattern recognition receptors. In this study, we surveyed the capacity of S100 proteins to induce proinflammatory cytokines and cell migration, and the contribution RAGE and TLR4 to mediate these responses in vitro. Using adenoviral delivery of murine S100A9, we also examined the potential for S100A9 homodimers to trigger lung inflammation in vivo. S100A8, S100A9 and S100A12, but not the S100A8/A9 heterodimer, induced modest levels of TLR4-mediated cytokine production from human PBMC. In contrast, for most S100s including S100A9, RAGE blockade inhibited S100-mediated cell migration of THP1 cells and major leukocyte populations, whereas TLR4-blockade had no effect. Intranasal administration of murine S100A9 adenovirus induced a specific, time-dependent predominately macrophage infiltration that coincided with elevated S100A9 levels and proinflammatory cytokines in the BAL fluid. Inflammatory cytokines were markedly ablated in the TLR4-defective mice, but unexpectedly the loss of TLR4 signaling or RAGE-deficiency did not appreciably impact the S100A9-mediated lung pathology or the inflammatory cell infiltrate in the alveolar space. These data demonstrate that physiological levels of S100A9 homodimers can trigger an inflammatory response in vivo, and despite the capacity of RAGE and TLR4 blockade to inhibit responses in vitro, the response is predominately independent of both these receptors.  相似文献   

9.
Production of pro-inflammatory cytokines by innate immune cells at the early stages of bacterial infection is important for host protection against the pathogen. Many intracellular bacteria, including Francisella tularensis, the agent of tularemia, utilize the anti-inflammatory cytokine IL-10, to evade the host immune response. It is well established that IL-10 has the ability to inhibit robust antigen presentation by dendritic cells and macrophages, thus suppressing the generation of protective immunity. The pathogenesis of F. tularensis is not fully understood, and research has failed to develop an effective vaccine to this date. In the current study, we hypothesized that F. tularensis polarizes antigen presenting cells during the early stages of infection towards an anti-inflammatory status characterized by increased synthesis of IL-10 and decreased production of IL-12p70 and TNF-α in an IFN-ɣ-dependent fashion. In addition, F. tularensis drives an alternative activation of alveolar macrophages within the first 48 hours post-infection, thus allowing the bacterium to avoid protective immunity. Furthermore, we demonstrate that targeting inactivated F. tularensis (iFt) to Fcγ receptors (FcɣRs) via intranasal immunization with mAb-iFt complexes, a proven vaccine strategy in our laboratories, reverses the anti-inflammatory effects of the bacterium on macrophages by down-regulating production of IL-10. More specifically, we observed that targeting of iFt to FcγRs enhances the classical activation of macrophages not only within the respiratory mucosa, but also systemically, at the early stages of infection. These results provide important insight for further understanding the protective immune mechanisms generated when targeting immunogens to Fc receptors.  相似文献   

10.

Areca nut is the fourth most widely used addictive and psychoactive substance consumed by approximately 10% of the world’s population. The use of areca nut is estimated to account for up to 50% of oral cancer in the low-income, and middle-income countries. In the present study, the effect of betel nut chewing on saliva proteomics was investigated by using mass spectrometry. Matrix-assisted laser desorption ionization mass spectrometry was used to generate a profile of the peptides in betel nut consumers and control group. We found 13 peptide peaks which were significantly altered (p?<?0.05) in the betel nut addicts when compared with the control group. These significant peptides signals were corresponding to protein cystatin SN (CST1), cystatin S (CST4), alpha 2 macroglobulin (A2M), complement C3 (C3), apolipoprotein E (APOE), serum albumin (ALB), matrix metalloproteinase-9 (MMP-9), deleted in malignant brain tumor protein 1 (DMBT1), zinc-alpha-2-glycoprotein (ZAG), and protein S100A8. The correlation analysis of significant peptides intensities with the history of betel nut chewing was also performed. The peptides of CST1 and CST4 showed negative correlation, whereas the peptides of the MMP-9, DMBT1, APOE, and C3 showed positive correlation with significant differences. STRING analysis of these proteins revealed that most of these proteins are interacting with each other. The present study identifies a number of proteins in a significantly different abundance in the betel nut consumers group. Some of these proteins are the reported biomarkers of several oral malignancies, which implies that the usage of betel nut could lead to inflammation, and development of oral cancer.

  相似文献   

11.
The cytoplasmic dynein light chain 1 (DYNLL1) is an important constituent of motor proteins complex. In human it is encoded by DYNLL1 gene. It is involved in cargo transport functions and interacts with many viral proteins with the help of short linear consensus motif sequence (K/R) XTQT. Viral proteins bind to DYNLL1 through its consensus short linear motif (SLiM) sequence to reach the target site in the cell and cause different infections in the host. It is still unknown if bacterial proteins also contain the same conserved SLiMs sequence through which they bind to this motor protein and cause infections. So, it is important to investigate the role of DYNLL1 in human bacterial infections. The interaction partner proteins of DYNLL1 against conserved viral motif sequences were predicted through PDBSum. Pairwise sequence alignment, between viral motif sequence and that of predicted proteins, was performed to identify conserved region in predicted interaction partners. Docking between the DYNLL1 and new pathogenic interaction partners was performed, by using PatchDock, to explore the protein-protein binding quality. Interactions of docked complexes were visualized by DimPlot. Three pathogenic bacterial proteins i.e., enterochelin esterase (3MGA), protective antigen (3J9C) and putative lipoprotein (4KT3) were selected as candidate interaction partners of DYNLL1. The putative lipoprotein (4KT3) showed low quality binding with DYNLL1. So, enterochelin esterase (3MGA) and protective antigen (3J9C) were speculated to be involved in human bacterial infections by using DYNLL1 to reach their target sites.  相似文献   

12.
13.
The Fused toes (Ft) mouse mutation was created by insertional mutagenesis, resulting in the deletion of several hundred kb of genomic sequences of mouse Chromosome (Chr) 8. Mice heterozygous for the Ft mutation are characterized by partial syndactyly of forelimbs and massive thymic hyperplasia indicating that programmed cell death is affected. Homozygous Ft/Ft embryos die at midgestation and show severe malformations of craniofacial structures. Furthermore, establishment of left-right asymmetry is random. Here we report on the positional cloning of a novel gene by exon trap analysis of a genomic clone encoding wild-type sequences corresponding to parts of the deletion in Ft mutants. RT-PCR experiments demonstrated that the newly identified gene, Fatso (Fto), is expressed throughout embryonic development. Wide expression was also found in tissues of adult mice. We show that expression of Fto is completely absent in mouse embryonic fibroblasts homozygous for the Ft mutation. In addition, we isolated the full-length cDNA which encodes a putative 58-kDa protein showing no similarities to known proteins or protein motifs. The expression data of Fto define it as a candidate gene involved in processes such as programmed cell death, craniofacial development, and establishment of left-right asymmetry. Received: 5 May 1999 / Accepted: 9 June 1999  相似文献   

14.
15.
Lactobacillus surface layer proteins: structure, function and applications   总被引:1,自引:0,他引:1  
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.  相似文献   

16.
17.
Over the first 4 days of their life, primordial germ cells invade the endoderm, migrate into and through the developing hindgut, and traverse to the genital ridge where they cluster and ultimately inhabit the nascent gonad. Specific signal–receptor combinations between primordial germ cells and their immediate environment establish successful migration and colonization. Here we demonstrate that disruption of a cluster of six genes on murine chromosome 8, as exemplified by the Fused Toes (Ft) mutant mouse model, results in severely decreased numbers of primordial germ cells within the early gonad. Primordial germ cell migration appeared normal within Ft mutant embryos; however, germ cell counts progressively decreased during this time. Although no difference in apoptosis was detected, we report a critical decrease in primordial germ cell proliferation by E12.5. The six genes within the Ft locus include the IrxB cluster (Irx3, -5, -6), Fts, Ftm, and Fto, of which only Ftm, Fto, and Fts are expressed in primordial germ cells of the early gonad. From these studies, we have discovered that the Ft locus on mouse chromosome 8 is associated with cell cycle deficits within the primordial germ cell population that initiates just before translocation into the genital ridge.  相似文献   

18.
BackgroundWe identified predominant vaginal microbiota communities, changes over time, and how this varied by HIV status and other factors in a cohort of 64 women.MethodsBacterial DNA was extracted from reposited cervicovaginal lavage samples collected annually over an 8–10 year period from Chicago Women’s Interagency HIV Study participants: 22 HIV-negative, 22 HIV-positive with stable infection, 20 HIV-positive with progressive infection. The vaginal microbiota was defined by pyrosequencing of the V1/V2 region of the 16S rRNA gene. Scheduled visits included Bacterial vaginsosis (BV) screening; clinically detected cases were referred for treatment. Hierarchical clustering identified bacterial community state types (CST). Multinomial mixed effects modeling determined trends over time in CST, by HIV status and other factors.ResultsThe median follow-up time was 8.1 years (range 5.5–15.3). Six CSTs were identified. The mean relative abundance (RA) of Lactobacillus spp. by CST (with median number of bacterial taxa) was: CST-1–25.7% (10), CST-2–27.1% (11), CST-3–34.6% (9), CST-4–46.8% (9), CST-5–57.9% (4), CST-6–69.4% (2). The two CSTs representing the highest RA of Lactobacillus and lowest diversity increased with each additional year of follow-up (CST-5, adjusted odds ratio (aOR) = 1.62 [95% CI: 1.34–1.94]; CST-6, aOR = 1.57 [95 CI: 1.31–1.89]), while the two CSTs representing lowest RA of Lactobacillus and higher diversity decreased with each additional year (CST-1, aOR = 0.89 [95% CI: 0.80–1.00]; CST-2, aOR = 0.86 [95% CI: 0.75–0.99]). There was no association between HIV status and CST at baseline or over time. CSTs representing lower RA of Lactobacillus were associated with current cigarette smoking.ConclusionsThe vaginal microbial community significantly improved over time in this cohort of women with HIV and at high risk for HIV who had regular detection and treatment referral for BV.  相似文献   

19.
Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号