首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modification of cellular autophagy protein LC3 by poliovirus   总被引:2,自引:1,他引:1       下载免费PDF全文
Poliovirus infection remodels intracellular membranes, creating a large number of membranous vesicles on which viral RNA replication occurs. Poliovirus-induced vesicles display hallmarks of cellular autophagosomes, including delimiting double membranes surrounding the cytosolic lumen, acquisition of the endosomal marker LAMP-1, and recruitment of the 18-kDa host protein LC3. Autophagy results in the covalent lipidation of LC3, conferring the property of membrane association to this previously microtubule-associated protein and providing a biochemical marker for the induction of autophagy. Here, we report that a similar modification of LC3 occurs both during poliovirus infection and following expression of a single viral protein, a stable precursor termed 2BC. Therefore, one of the early steps in cellular autophagy, LC3 modification, can be genetically separated from the induction of double-membraned vesicles that contain the modified LC3, which requires both viral proteins 2BC and 3A. The existence of viral inducers that promote a distinct aspect of the formation of autophagosome-like membranes both facilitates the dissection of this cellular process and supports the hypothesis that this branch of the innate immune response is directly subverted by poliovirus.  相似文献   

2.
《Autophagy》2013,9(3):286-289
The RNA replication complexes of small positive-strand RNA viruses such as poliovirus are known to form on the surfaces of membranous vesicles in the cytoplasm of infected mammalian cells. These membranes resemble cellular autophagosomes in their double-membraned morphology, cytoplasmic lumen, lipid-rich composition and the presence of cellular proteins LAMP 1 and LC3. Furthermore, LC3 protein is covalently modified during poliovirus infection in a manner indistinguishable from that observed during bona fide autophagy. This covalent modification can also be induced by the expression of viral protein 2BC in isolation.However, differences between poliovirus-induced vesicles and autophagosomes also exist: the viral-induced membranes are smaller, at 200- 400 nm in diameter, and can be induced by the combination of two viral proteins, termed 2BC and 3A. Experimental suppression of expression of proteins in the autophagy pathway was found to viral yield, arguing that this pathway facilitates viral infection, rather than clearing it. We have hypothesized that, in addition to providing membranous surfaces for assembly of viral RNA replication complexes, double-membraned vesicles provide a topological mechanism to deliver cytoplasmic contents, including mature virus, to the extracellular milieu without lysing the cell.  相似文献   

3.
Potential subversion of autophagosomal pathway by picornaviruses   总被引:1,自引:0,他引:1  
Taylor MP  Kirkegaard K 《Autophagy》2008,4(3):286-289
The RNA replication complexes of small positive-strand RNA viruses such as poliovirus are known to form on the surfaces of membranous vesicles in the cytoplasm of infected mammalian cells. These membranes resemble cellular autophagosomes in their double-membraned morphology, cytoplasmic lumen, lipid-rich composition and the presence of cellular proteins LAMP 1 and LC3. Furthermore, LC3 protein is covalently modified during poliovirus infection in a manner indistinguishable from that observed during bona fide autophagy. This covalent modification can also be induced by the expression of viral protein 2BC in isolation. However, differences between poliovirus-induced vesicles and autophagosomes also exist: the viral-induced membranes are smaller, at 200-400 nm in diameter, and can be induced by the combination of two viral proteins, termed 2BC and 3A. Experimental suppression of expression of proteins in the autophagy pathway was found to reduce viral yield, arguing that this pathway facilitates viral infection, rather than clearing it. We have hypothesized that, in addition to providing membranous surfaces for assembly of viral RNA replication complexes, double-membraned vesicles provide a topological mechanism to deliver cytoplasmic contents, including mature virus, to the extracellular milieu without lysing the cell.  相似文献   

4.
Viruses can hijack autophagosomes as the nonlytic release vehicles in cultured host cells. However, how autophagosome-mediated viral spread occurs in infected host tissues or organs in vivo remains poorly understood. Here, we report that an important rice reovirus, rice gall dwarf virus (RGDV) hijacks autophagosomes to traverse multiple insect membrane barriers in the midgut and salivary gland of leafhopper vector to enhance viral spread. Such virus-containing double-membraned autophagosomes are prevented from degradation, resulting in increased viral propagation. Mechanistically, viral nonstructural protein Pns11 induces autophagy and embeds itself in the autophagosome membranes. The autophagy-related protein 5 (ATG5)-ATG12 conjugation is essential for initial autophagosome membrane biogenesis. RGDV Pns11 specifically interacts with ATG5, both in vitro and in vivo. Silencing of ATG5 or Pns11 expression suppresses ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, Pns11 could directly recruit ATG5-ATG12 conjugation to induce the formation of autophagosomes, facilitating viral spread within the insect bodies. Furthermore, Pns11 potentially blocks autophagosome degradation by directly targeting and mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. Taken together, these results highlight how RGDV remodels autophagosomes to benefit viral propagation in its insect vector.  相似文献   

5.
Autophagy is a cellular process that sequesters cargo in double-membraned vesicles termed autophagosomes and delivers this cargo to lysosomes to be degraded. It is enhanced during nutrient starvation to increase the rate of amino acid turnover. Diverse roles for autophagy have been reported for viral infections, including the assembly of viral replication complexes on autophagic membranes and protection of host cells from cell death. Here, we show that autophagosomes accumulate in Semliki Forest virus (SFV)-infected cells. Despite this, disruption of autophagy had no effect on the viral replication rate or formation of viral replication complexes. Also, viral proteins rarely colocalized with autophagosome markers, suggesting that SFV did not utilize autophagic membranes for its replication. Further, we found that SFV infection, unlike nutrient starvation, did not inactivate the constitutive negative regulator of autophagosome formation, mammalian target of rapamycin, suggesting that SFV-dependent accumulation of autophagosomes was not a result of enhanced autophagosome formation. In starved cells, addition of NH(4)Cl, an inhibitor of lysosomal acidification, caused a dramatic accumulation of starvation-induced autophagosomes, while in SFV-infected cells, NH(4)Cl did not further increase levels of autophagosomes. These results suggest that accumulation of autophagosomes in SFV-infected cells is due to an inhibition of autophagosome degradation rather than enhanced rates of autophagosome formation. Finally, we show that the accumulation of autophagosomes in SFV-infected cells is dependent on the expression of the viral glycoprotein spike complex.  相似文献   

6.
Subversion of cellular autophagosomal machinery by RNA viruses   总被引:10,自引:0,他引:10       下载免费PDF全文
Infection of human cells with poliovirus induces the proliferation of double-membraned cytoplasmic vesicles whose surfaces are used as the sites of viral RNA replication and whose origin is unknown. Here, we show that several hallmarks of cellular autophagosomes can be identified in poliovirus-induced vesicles, including colocalization of LAMP1 and LC3, the human homolog of Saccharomyces cerevisiae Atg8p, and staining with the fluorophore monodansylcadaverine followed by fixation. Colocalization of LC3 and LAMP1 was observed early in the poliovirus replicative cycle, in cells infected with rhinoviruses 2 and 14, and in cells that express poliovirus proteins 2BC and 3A, known to be sufficient to induce double-membraned vesicles. Stimulation of autophagy increased poliovirus yield, and inhibition of the autophagosomal pathway by 3-methyladenine or by RNA interference against mRNAs that encode two different proteins known to be required for autophagy decreased poliovirus yield. We propose that, for poliovirus and rhinovirus, components of the cellular machinery of autophagosome formation are subverted to promote viral replication. Although autophagy can serve in the innate immune response to microorganisms, our findings are inconsistent with a role for the induced autophagosome-like structures in clearance of poliovirus. Instead, we argue that these double-membraned structures provide membranous supports for viral RNA replication complexes, possibly enabling the nonlytic release of cytoplasmic contents, including progeny virions, from infected cells.  相似文献   

7.
Rosenfeldt MT  Nixon C  Liu E  Mah LY  Ryan KM 《Autophagy》2012,8(6):963-969
(Macro)Autophagy is a phylogenetically conserved membrane-trafficking process that functions to deliver cytoplasmic cargoes to lysosomes for digestion. The process is a major mechanism for turnover of cellular constituents and is therefore critical for maintaining cellular homeostasis. Macroautophagy is characteristically distinct from other forms of autophagy due to the formation of double-membraned vesicles termed autophagosomes which encapsulate cargoes prior to fusion with lysosomes. Autophagosomes contain an integral membrane-bound form (LC3-II) of the microtubule-associated protein 1 light chain 3 β (MAP1LC3B), which has become a gold-standard marker to detect accumulation of autophagosomes and thereby changes in macroautophagy. Due to the role played by macroautophagy in various diseases, the detection of autophagosomes in tissue sections is frequently desired. To date, however, the detection of endogenous LC3-II on paraffin-embedded tissue sections has proved problematic. We report here a simple, optimized and validated method for the detection of LC3-II by immunohistochemistry in human and mouse tissue samples that we believe will be a useful resource for those wishing to study macroautophagy ex vivo.  相似文献   

8.
Moreau K  Ravikumar B  Renna M  Puri C  Rubinsztein DC 《Cell》2011,146(2):303-317
Autophagy is a catabolic process in which lysosomes degrade intracytoplasmic contents transported in double-membraned autophagosomes. Autophagosomes are formed by the elongation and fusion of phagophores, which can be derived from preautophagosomal structures coming from the plasma membrane and other sites like the endoplasmic reticulum and mitochondria. The mechanisms by which preautophagosomal structures elongate their membranes and mature toward fully formed autophagosomes still remain unknown. Here, we show that the maturation of the early Atg16L1 precursors requires homotypic fusion, which is essential for subsequent autophagosome formation. Atg16L1 precursor homotypic fusion depends on the SNARE protein VAMP7 together with partner SNAREs. Atg16L1 precursor homotypic fusion is a critical event in the early phases of autophagy that couples membrane acquisition and autophagosome biogenesis, as this step regulates the size of the vesicles, which in turn appears to influence their subsequent maturation into LC3-positive autophagosomes.  相似文献   

9.
Autophagy is a membrane trafficking pathway that carries cytosolic components to the lysosome for degradation. During this process, the autophagosome, a double-membraned organelle, is generated de novo, sequesters cytoplasmic proteins and organelles, and delivers them to lysosomes. However, the mechanism by which autophagosomes are targeted to lysosomes has not been determined. Here, we observed the real-time behavior of microtubule-associated protein light chain 3 (LC3), which localizes to autophagosomes, and showed that autophagosomes move in a microtubule- and dynein-dynactin motor complex-dependent manner. After formation, autophagosomes show a rapid vectorial movement in the direction of the centrosome, where lysosomes are usually concentrated. Microinjection of antibodies against LC3 inhibited this movement; furthermore, using FRAP, we showed that anti-LC3 antibody injection caused a defect in targeting of autophagosomes to lysosomes. Collectively, our data demonstrate the functional significance of autophagosome movement that enables effective delivery from the cytosol to lysosomes.  相似文献   

10.
《Autophagy》2013,9(6):963-969
(Macro)Autophagy is a phylogenetically conserved membrane-trafficking process that functions to deliver cytoplasmic cargoes to lysosomes for digestion. The process is a major mechanism for turnover of cellular constituents and is therefore critical for maintaining cellular homeostasis. Macroautophagy is characteristically distinct from other forms of autophagy due to the formation of double-membraned vesicles termed autophagosomes which encapsulate cargoes prior to fusion with lysosomes. Autophagosomes contain an integral membrane-bound form (LC3-II) of the microtubule-associated protein 1 light chain 3 β (MAP1LC3B), which has become a gold-standard marker to detect accumulation of autophagosomes and thereby changes in macroautophagy. Due to the role played by macroautophagy in various diseases, the detection of autophagosomes in tissue sections is frequently desired. To date, however, the detection of endogenous LC3-II on paraffin-embedded tissue sections has proved problematic. We report here a simple, optimized and validated method for the detection of LC3-II by immunohistochemistry in human and mouse tissue samples that we believe will be a useful resource for those wishing to study macroautophagy ex vivo.  相似文献   

11.
The membrane origins of autophagosomes have been a key unresolved question in the field. The earliest morphologically recognizable structure in the macroautophagy/autophagy itinerary is the double-membraned cup-shaped phagophore. Newly formed phosphatidylinositol 3-phosphate (PtdIns3P) on the membranes destined to become phagophores recruits WIPI2, which, in turn, binds ATG16L1 to define the sites of autophagosome formation. Here we review our recent study showing that membrane recruitment of WIPI2 requires coincident detection of PtdIns3P and RAB11A, a protein that marks recycling endosomes. We found that multiple core autophagy proteins are more tightly associated with the recycling endosome compartment than with endoplasmic reticulum (ER)-mitochondrial contact sites. Furthermore, biochemical isolation of the recycling endosomes confirmed that they recruit autophagy proteins. Finally, fixed and live-cell imaging data revealed that recycling endosomes engulf autophagic substrates. Indeed, the sequestration of mitochondria after mitophagy stimulation depends on early autophagy regulators. These data suggest that autophagosomes evolve from the RAB11A compartment.  相似文献   

12.
《Autophagy》2013,9(8):1269-1270
Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.  相似文献   

13.
Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission.  相似文献   

14.
Macroautophagy sequesters superflous cytosol and organelles into double-membraned autophagosomes. Over 30 autophagy-related (ATG) genes have been identified without elucidating the molecular details of autophagosome biogenesis. All proposed models for autophagosome formation require membrane fusion events (Fig. 1). Previous studies assumed that the autophagic machinery mediates these membrane fusions in a SNARE-independent manner and identified the ubiquitin-like protein Atg8 as a key component especially for elongation of the forming autophagosome. However, if and how Atg8 mediates membrane fusion and why a ubiquitin-like protein is needed for autophagosome biogenesis remained open questions. Since nuclear envelope growth and fusion of Golgi fragments are topologically similar to autophagosome formation and depend on the AAA (+) ATPase p97/VCP and p47 we analyzed the involvement of their yeast homologues Cdc48 and Shp1 in macroautophagy.  相似文献   

15.
Autophagy is a programmed homeostatic response to diverse types of cellular stress that disposes of long-lived proteins, organelles, and invading microbes within double-membraned structures called autophagosomes. The 2′,5′-oligoadenylate/RNase L system is a virus-activated host RNase pathway that disposes of or processes viral and cellular single-stranded RNAs. Here we report that activation of RNase L during viral infections induces autophagy. Accordingly, infections with encephalomyocarditis virus or vesicular stomatitis virus led to higher levels of autophagy in wild-type mouse embryonic fibroblasts (MEF) than in RNase L-null MEF. Similarly, direct activation of RNase L with a 2′,5′-oligoadenylate resulted in p62(SQSTM1) degradation, LC3BI/LC3BII conversion, and appearance of autophagosomes. To determine the effect of RNase L-mediated autophagy on viral replication, we compared viral yields in wild-type and RNase L-null MEF in the absence or presence of either chemical inhibitors of autophagy (bafilomycin A1 or 3-methyladenine) or small interfering RNA (siRNA) against ATG5 or beclin-1. At a low multiplicity of infection, induction of autophagy by RNase L during the initial cycle of virus growth contributed to the suppression of virus replication. However, in subsequent rounds of infection, autophagy promoted viral replication, reducing the antiviral effect of RNase L. Our results indicate a novel function of RNase L as an inducer of autophagy that affects viral yields.  相似文献   

16.
Mechanisms of autophagosome biogenesis   总被引:1,自引:0,他引:1  
Autophagy is a unique membrane trafficking process whereby newly formed membranes, termed phagophores, engulf parts of the cytoplasm leading to the production of double-membraned autophagosomes that get delivered to lysosomes for degradation. This catabolic pathway has been linked to numerous physiological and pathological conditions, such as development, programmed cell death, cancer, pathogen infection, neurodegenerative disorders, and myopathies. In this review, we will focus on recent studies in yeast and mammalian systems that have provided insights into two critical areas of autophagosome biogenesis - the source of the autophagosomal membranes, and the mechanisms regulating the fusion of the edges of the double-membraned phagophores to form autophagosomes.  相似文献   

17.
融合蛋白与病毒入膜机制研究进展   总被引:2,自引:0,他引:2  
Wu M  Nie SQ 《生理科学进展》1998,29(3):221-225
包膜病毒感染细胞的第一步即病毒与靶细胞膜的融合,它由病毒包膜上的融合蛋白诱发,融合蛋白与受体分子相互作用后暴露出融合肽,它伸向靶膜使两膜紧密接近后,多肽周围的脂质分子进一步重排,通过中间态最后发生融合,本文将介绍近年来病毒融合蛋白及入膜机制研究进展。  相似文献   

18.
Methods for monitoring autophagy   总被引:19,自引:0,他引:19  
Autophagy is an intracellular bulk degradation system that is found ubiquitously in eukaryotes. Autophagy is responsible for the degradation of most long-lived proteins and some organelles. Cytoplasmic constituents, including organelles, are sequestered into double-membraned autophagosomes, which subsequently fuse with lysosomes where their contents are degraded. This system has been implicated in various physiological processes including protein and organelle turnover, the starvation response, cellular differentiation, cell death, and pathogenesis. However, methods for monitoring autophagy have been very limited and unsatisfactory. The most standard method is conventional electron microscopy. In addition, some biochemical methods have been utilized to measure autophagic activity. Recently, the molecular basis of autophagosome formation has been extensively studied using yeast cells; these studies have provided useful marker proteins for autophagosomes. Importantly, most of these proteins are conserved in mammals. Using these probes, we can now specifically monitor autophagic activity.  相似文献   

19.
Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.  相似文献   

20.
For nonenveloped viruses such as Simian Virus 40, the mechanism used to translocate viral components across membranes is poorly understood. Previous results indicated that the minor structural proteins, VP2 and VP3, might act as membrane proteins during infection. Here, purified VP2 and VP3 were found to form pores in host cell membranes. To identify possible membrane domains, individual hydrophobic domains from VP2 and VP3 were expressed in a model protein and tested for their ability to integrate into membranes. Several domains from the late proteins supported endoplasmic reticulum membrane insertion as transmembrane domains. Mutations in VP2 and VP3 were engineered that inhibited membrane insertion and pore formation. When these mutations were introduced into the viral genome, viral propagation was inhibited. This comprehensive approach revealed that the viroporin activity of VP2 and VP3 was inhibited by targeted disruptions of individual hydrophobic domains and the loss of membrane disruption activity impaired viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号