首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although the uniparental (or maternal) inheritance of mitochondrial DNA (mtDNA) is widespread, the reasons for its evolution remain unclear. Two main hypotheses have been proposed: selection against individuals containing different mtDNAs (heteroplasmy) and selection against “selfish” mtDNA mutations. Recently, uniparental inheritance was shown to promote adaptive evolution in mtDNA, potentially providing a third hypothesis for its evolution. Here, we explore this hypothesis theoretically and ask if the accumulation of beneficial mutations provides a sufficient fitness advantage for uniparental inheritance to invade a population in which mtDNA is inherited biparentally. In a deterministic model, uniparental inheritance increases in frequency but cannot replace biparental inheritance if only a single beneficial mtDNA mutation sweeps through the population. When we allow successive selective sweeps of mtDNA, however, uniparental inheritance can replace biparental inheritance. Using a stochastic model, we show that a combination of selection and drift facilitates the fixation of uniparental inheritance (compared to a neutral trait) when there is only a single selective mtDNA sweep. When we consider multiple mtDNA sweeps in a stochastic model, uniparental inheritance becomes even more likely to replace biparental inheritance. Our findings thus suggest that selective sweeps of beneficial mtDNA haplotypes can drive the evolution of uniparental inheritance.  相似文献   

2.
Mitochondria are descended from free-living bacteria that were engulfed by another cell between one and a half to two billion years ago. A redistribution of DNA led to most genetic information being lost or transferred to a large central genome in the nucleus, leaving a residual genome in each mitochondrion. Oxidative phosphorylation, the most critical function of mitochondria, depends on the functional compatibility of proteins encoded by both the nucleus and mitochondria. We investigate whether selection for adaptation between the nuclear and mitochondrial genomes (mitonuclear co-adaptation) could, in principle, have promoted uniparental inheritance of mitochondria and thereby the evolution of two mating types or sexes. Using a mathematical model, we explore the importance of the radical differences in ploidy levels, sexual and asexual modes of inheritance, and mutation rates of the nucleus and mitochondria. We show that the major features of mitochondrial inheritance, notably uniparental inheritance and bottlenecking, enhance the co-adaptation of mitochondrial and nuclear genes and therefore improve fitness. We conclude that, under a wide range of conditions, selection for mitonuclear co-adaptation favours the evolution of two distinct mating types or sexes in sexual species.  相似文献   

3.
The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable.This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’.  相似文献   

4.
It has previously been suggested that small sperm size may be an adaptation to achieve uniparental inheritance of organelles, and hence to prevent the spread of selfish cytoplasmic elements. Such an explanation for anisogamy implies a mechanism whereby the male gamete eliminates its own cytoplasm prior to fusion with the egg. A model has been presented demonstrating the invasion and persistence of a modifier that acts gametically to kill its own organelles. Here we show, however, that this model is far from robust; indeed, if any cost is associated with the modifier it cannot persist. We also show that despite an empirically demonstrated association between anisogamy and multicellularity, this result also applies if the analysis is applied in the multicellular case. This class of model contrasts with the majority of analyses in which the modifier kills off the incoming gamete’s organelles. We show that these models are highly robust, even if uniparental inheritance is imperfect.  相似文献   

5.
It is generally assumed that mitochondrial genomes are uniparentally transmitted, homoplasmic and nonrecombining. However, these assumptions draw largely from early studies on animal mitochondrial DNA (mtDNA). In this review, we show that plants, animals and fungi are all characterized by episodes of biparental inheritance, recombination among genetically distinct partners, and selfish elements within the mitochondrial genome, but that the extent of these phenomena may vary substantially across taxa. We argue that occasional biparental mitochondrial transmission may allow organisms to achieve the best of both worlds by facilitating mutational clearance but continuing to restrict the spread of selfish genetic elements. We also show that methodological biases and disproportionately allocated study effort are likely to have influenced current estimates of the extent of biparental inheritance, heteroplasmy and recombination in mitochondrial genomes from different taxa. Despite these complications, there do seem to be discernible similarities and differences in transmission dynamics and likelihood of recombination of mtDNA in plant, animal and fungal taxa that should provide an excellent opportunity for comparative investigation of the evolution of mitochondrial genome dynamics.  相似文献   

6.
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or both) appear even though they restrict the probability of finding a compatible mating partner? Why does the number of gamete classes vary from zero to thousands, with most often only two classes? We review here the hypotheses proposed to explain the origin, maintenance, number, and loss of gamete classes. We argue that fungi represent highly suitable models to help resolve issues related to the evolution of distinct gamete classes, because the number of mating types vary from zero to thousands across taxa, anisogamy is present or not, and because there are frequent transitions between these conditions. We review the nature and number of gamete classes in fungi, and we attempt to draw inferences from these data on the evolutionary forces responsible for their appearance, loss or maintenance, and number.  相似文献   

7.
Under maternal inheritance, mitochondrial genomes are prone to accumulate mutations that exhibit male‐biased effects. Such mutations should, however, place selection on the nuclear genome for modifier adaptations that mitigate mitochondrial‐incurred male harm. One gene region that might harbor such modifiers is the Y‐chromosome, given the abundance of Y‐linked variation for male fertility, and because Y‐linked modifiers would not exert antagonistic effects in females because they would be found only in males. Recent studies in Drosophila revealed a set of nuclear genes whose expression is sensitive to allelic variation among mtDNA‐ and Y‐haplotypes, suggesting these genes might be entwined in evolutionary conflict between mtDNA and Y. Here, we test whether genetic variation across mtDNA and Y haplotypes, sourced from three disjunct populations, interacts to affect male mating patterns and fertility across 10 days of early life in D. melanogaster. We also investigate whether coevolved mito‐Y combinations outperform their evolutionarily novel counterparts, as predicted if the interacting Y‐linked variance is comprised of modifier adaptations. Although we found no evidence that coevolved mito‐Y combinations outperformed their novel counterparts, interactions between mtDNA and Y‐chromosomes affected male mating patterns. These interactions were dependent on male age; thus male reproductive success was shaped by G × G × E interactions.  相似文献   

8.
Mating type determination in Tetrahymena malaccensis is karyonidal, ie, the four new macronuclei developing in a single conjugating pair are independently determined as to which of the six known mating types they will express. Occasional selfing clones are similar to those in T thermophila, in that any one is capable of stabilizing at a restricted range of mating types. The genetic basis of mating type potentialities is incompletely resolved. T malaccensis may, like T thermophila and T canadensis, have a single multiallelic locus that controls the array of types. Quantitative considerations suggest, however, that other loci may be involved.  相似文献   

9.
Paternal inheritance of mitochondria DNA in sheep was discovered by examination of 152 sheep from 38 hybrid families for mtDNA D-loop polymorphisms using PCR-RFLP, amplification of repeated sequence somain, and PCR-SSCP of the D-loop 5' end region of a 253 bp fragment. Our findings have provided the first evidence of paternal inheritance of mtDNA in sheep and possible mechanisms of paternal inheritance were discussed.  相似文献   

10.
Ciliates are a diverse group of microbial eukaryotes that exhibit tremendous variety in several aspects of their mating systems. To understand the evolutionary forces driving mating system diversification in ciliates, we use a comparative approach synthesizing data from many ciliate species in light of recent phylogenetic analyses. Specifically, we investigate the evolution of number of mating types, mode of mating type inheritance, and the molecular determinants of mating types across the taxonomic diversity of ciliates, with an emphasis on three well-studied genera: Tetrahymena , Paramecium , and Euplotes . We find that there have been many transitions in the number of mating types, and that the requirement of nuclear reorganization may be a more important factor than genetic exchange in determining the optimum number of mating types in a species. We also find that the molecular determinants of mating types and mode of inheritance are evolving under different constraints in different lineages of ciliates. Our results emphasize the need for further detailed examination of mating systems in understudied ciliate lineages.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 187–197.  相似文献   

11.
Paternal inheritance of mitochondria DNA in sheep was discovered by examination of 152 sheep from 38 hybrid families for mtDNA D-loop polymorphisms using PCR-RFLP, amplification of repeated sequence somain, and PCR-SSCP of the D-loop 5′ end region of a 253 bp fragment. Our findings have provided the first evidence of paternal inheritance of mtDNA in sheep and possible mechanisms of paternal inheritance were discussed.  相似文献   

12.
Bivalves of the families Mytilidae, Unionidae, and Veneridae have an unusual mode of mitochondrial DNA (mtDNA) transmission called doubly uniparental inheritance (DUI). A characteristic feature of DUI is the presence of two gender-associated mtDNA genomes that are transmitted through males (M-type mtDNA) and females (F-type mtDNA), respectively. Female mussels are predominantly homoplasmic with only the F-type expressed in both somatic and gonadal tissue; males are heteroplasmic with the M-type expressed in the gonad and F-type in somatic tissue for the most part. An unusual evolutionary feature of this system is that an mt genome with F-coding sequences occasionally invades the male route of inheritance (i.e., a "role reversal" event), and is thereafter transmitted as a new M-type. Phylogenetic studies have demonstrated that the new or "recently masculinized" M-types may eventually replace the older or "standard" M-types over time. To investigate whether this replacement process could be due to an advantage in sperm swimming behavior, we measured differences in motility parameters and found that sperm with the recently masculinized M-type had significantly faster curvilinear velocity and average path velocity when compared to sperm with standard M-type. This increase in sperm swimming speed could explain the multiple evolutionary replacements of standard M-types by masculinized M-types that have been hypothesized for the mytilid lineage. However, our observations do not support the hypothesis that DUI originated because it permits the evolution of mitochondrial adaptations specific to sperm performance, otherwise, the evolutionarily older, standard M genome should perform better.  相似文献   

13.
Doubly uniparental inheritance (DUI) is a mode of inheriting mitochondrial DNA that is distinct from strictly maternal inheritance. It has been described in nine and three families of marine and freshwater mussels, respectively, including the European margaritiferids and unionids. Among the 16 freshwater species of Unionida inhabiting Europe, DUI has been described in 9 species of dioecious mussels and was absent from a single hermaphroditic species and from secondary hermaphroditic specimens. The DUI freshwater mussels include two vastly genetically different mitochondrial genomes: maternal (F genome) and paternal (M genome), which coexist within the same specimen but in different tissues. The F genome is present in all female tissues and somatic male tissues. It is inherited in the typical, maternal, manner. Conversely, the M genome is located primarily in the male gonads and generative cells, and is inherited paternally. Dioecious Unionidae display unique characteristics that have been interrelated for over 200 million years: a high fidelity of the transmission of the F and M genomes in DUI and two paths of spermatogenesis–the typical path that produces sperm cells containing mitochondria with the F genome and the atypical path that produces sperm cells with the M genome. The mitogenomes of freshwater mussels display unique features that are not present in any other animal, that is, an additional, gender-specific gene and an elongated cox2 gene occurring exclusively in the M genome. These features mean that the mitochondria, in addition to their basic function of producing energy, also may take part in determining sex in these dioecious organisms.  相似文献   

14.
The doubly uniparental inheritance (DUI) of some bivalve mollusks is the major exception to the common maternal inheritance of mitochondria in animals. DUI involves two mitochondrial lineages with paternal and maternal transmission routes, and it appears as a complex phenomenon requiring both nuclear and mitochondrial adaptations. DUI distribution seems to be scattered among the Bivalvia, and there are several clues for its multiple origins. In this paper, we investigate whether the incipient DUI systems had left possible selective signatures on mitochondrial genomes. Alongside the outstanding divergence of amino acid sequences, we confirmed strong purifying selection to act on mitochondrial genes. However, we found evidence that distinct episodes of intense directional pressure are associated with the origins of different DUI systems: We interpret these signals as footprints of the coevolution with the nuclear genome that ought to take place at the base of a DUI clade. Six genes (atp6, cox1, cox2, cox3, nad4L, and nad6) seem to be more commonly linked to the appearance of DUI. We also identified few putative DUI‐specific mutations, thus extending support to the hypothesis of multiple independent origins of this complex phenomenon.  相似文献   

15.
The Allee effect is one of the population consequences of sexual reproduction that has received increased attention in recent years. Due to its impact on small population dynamics, it is commonly accepted that Allee effects should render populations more extinction prone. In particular, monogamous species are considered more susceptible to the Allee effect and hence, more extinction prone, than polygamous species. Although this hypothesis has received theoretical support, there is little empirical evidence. In this study, we investigate (1) how variation in tertiary sex ratio affects the presence and intensity of the Allee effect induced by mating system, as well as (2) how this effect contributes to extinction risk. In contrast with previous predictions, we show that all mating systems are likely to experience a strong Allee effect when the operational sex ratio (OSR) is balanced. This strong Allee effect does not imply being exceptionally extinction prone because it is associated with an OSR that result in a relatively small extinction risk. As a consequence, the impact of Allee effects on overall extinction risk is buffered. Moreover, the OSR of natural populations appears to be often male biased, thus making it unlikely that they will suffer from an Allee effect induced by mating system.  相似文献   

16.
Mitochondrial genes are widely used in taxonomy and systematics because high mutation rates lead to rapid sequence divergence and because such changes have long been assumed to be neutral with respect to function. In particular, the nucleotide sequence of the mitochondrial gene cytochrome c oxidase subunit 1 has been established as a highly effective DNA barcode for diagnosing the species boundaries of animals. Rarely considered in discussions of mitochondrial evolution in the context of systematics, speciation, or DNA barcodes, however, is the genomic architecture of the eukaryotes: Mitochondrial and nuclear genes must function in tight coordination to produce the complexes of the electron transport chain and enable cellular respiration. Coadaptation of these interacting gene products is essential for organism function. I extend the hypothesis that mitonuclear interactions are integral to the process of speciation. To maintain mitonuclear coadaptation, nuclear genes, which code for proteins in mitochondria that cofunction with the products of mitochondrial genes, must coevolve with rapidly changing mitochondrial genes. Mitonuclear coevolution in isolated populations leads to speciation because population‐specific mitonuclear coadaptations create between‐population mitonuclear incompatibilities and hence barriers to gene flow between populations. In addition, selection for adaptive divergence of products of mitochondrial genes, particularly in response to climate or altitude, can lead to rapid fixation of novel mitochondrial genotypes between populations and consequently to disruption in gene flow between populations as the initiating step in animal speciation. By this model, the defining characteristic of a metazoan species is a coadapted mitonuclear genotype that is incompatible with the coadapted mitochondrial and nuclear genotype of any other population.  相似文献   

17.
Maternal inheritance is one of the hallmarks of animal mitochondrial DNA (mtDNA) and central to its success as a molecular marker. This mode of inheritance and subsequent lack of heterologous recombination allows us to retrace evolutionary relationships unambiguously down the matriline and without the confounding effects of recombinant genetic information. Accumulating evidence of biparental inheritance of mtDNA (paternal leakage), however, challenges our current understanding of how this molecule is inherited. Here, using Drosophila simulans collected from an East African metapopulation exhibiting recurring mitochondrial heteroplasmy, we conducted single fly matings and screened F1 offspring for the presence of paternal mtDNA using allele-specific PCR assays (AS–PCR). In all, 27 out of 4092 offspring were identified as harboring paternal mtDNA, suggesting a frequency of 0.66% paternal leakage in this species. Our findings strongly suggest that recurring mtDNA heteroplasmy as observed in natural populations of Drosophila simulans is most likely caused by repeated paternal leakage. Our findings further suggest that this phenomenon to potentially be an integral part of mtDNA inheritance in these populations and consequently of significance for mtDNA as a molecular marker.  相似文献   

18.
19.
Marine mussels of the family Mytilidae, as well as a number of other bivalves, have a unique system of mitochondrial DNA inheritance called doubly uniparental inheritance (DUI). DUI is characterized by the presence of an ‘F’ mitochondrial genome that is transmitted through mothers to daughters and sons, and an ‘M’ mitochondrial genome that is transmitted only from fathers to sons. In this paper, we demonstrate that DUI exists in the horse mussel, Modiolus modiolus (Linnaeus, 1758) and compare the pattern of molecular evolution of the M and F types in this species. Total DNA was isolated from M. modiolus male and female gonad tissues, as well as from spawned sperm cells. From these DNA samples, partial mitochondrial DNA fragments were amplified from both cytochrome c oxidase subunit I (cox1), and 16S ribosomal RNA (rrnL) genes. Based on cox1 and rrnL sequences, heteroplasmy was observed in M. modiolus and characterized by the resolution of two mitotypes: an F mitotype present in tissues of both males and females, and an M mitotype present in spawned sperm. Using standardized p‐distance and Tamura‐Nei values, M. modiolus is found to display the highest M/F conspecific sequence divergence for any member of the family Mytilidae (i.e. 38% M/F sequence divergence, which is 9% higher than any other intraspecific M/F comparison for the family Mytilidae when standardized using p‐distances across all taxa observed). Sequence analysis also indicated that the M. modiolus M mitotype evolves significantly faster than its conspecific F type. The findings discussed herein broaden the range of mytilid species known to exhibit DUI and they also establish a new threshold for the genetic divergence of male mytilid mitochondrial genomes.  相似文献   

20.
Mating rate optima often differ between the sexes: males may increase their fitness by multiple mating, but for females multiple mating confers little benefit and can often be costly (especially in taxa without nuptial gifts or mala parental care). Sexually antagonistic evolution is thus expected in traits related to mating rates under sexual selection. This prediction has been tested by multiple studies that applied experimental evolution technique, which is a powerful tool to directly examine the evolutionary consequences of selection. Yet, the results so far only partly support the prediction. Here, we provide another example of experimental evolution of sexual selection, by applying it for the first time to the mating behaviour of a seed beetle Callsorobruchus chinensis. We found a lower remating rate in polygamy-line females than in monogamy-line (i.e. no sexual selection) females after 21 generations of selection. Polygamy-line females also showed a longer duration of first mating than monogamy-line females. We found no effect of male evolutionary lines on the remating rate or first mating duration. Though not consistent with the original prediction, the current and previous studies collectively suggest that the observed female-limited responses may be a norm, which is also consistent with the conceptual advances in the last two decades of the advantages and limitations of experimental evolution technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号