首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
H Reuber  L Vollrath 《Acta anatomica》1983,117(2):121-127
Previous studies have yielded equivocal results concerning the 24-hour rhythmicity of mitotic activity in the rat pineal. The aim of the present study was to re-investigate this problem by carrying out three separate 24-hour experiments on alternate days. The results obtained confirm previous findings showing that in the pineal gland of adults mitotic activity is low. On average 22.3 mitotic figures of pinealocytes are seen per pineal gland, corresponding to a mitotic index of 0.2-0.6/1,000 pinealocytes. Mitotic activity is distinctly higher at daytime than at night. The timing of the peaks and troughs differs slightly from experiment to experiment. The majority of observations now indicate that in the rat pineal gland mitotic activity is higher at day time than at night.  相似文献   

4.
Taurine is believed to be a modulator of membrane excitability in muscle and a neuroinhibitory transmitter in the central nervous system. The retina and pineal contain relatively large quantities of taurine. Taurine levels in the retina are reported to be responsive to variations in lighting conditions. We report here a carcadian rhythm for taurine in the mature male rat pineal gland. The maximum taurine concentration occurs at the midpoint of the light period, 24 ± 1.9 nmoles/gland, and the minimum at the beginning of the dark period, 13.9 ± 1.6 nmoles/gland. Sympathectomy by bilateral superior cervical ganglionectomy lowered pineal taurine levels. Constant light and blinding had no effect. Taurine was demonstrated to be taken up by the pineal gland invitro in organ culture. The uptake was saturable, Km = 2.0 mM, and sodium dependent. The close structural analogs hypotaurine and β-alanine inhibited taurine uptake but α-alanine did not. We have demonstrated a circadian rhythm for taurine content in the rat pineal gland and the presence of a sodium-dependent transport system for taurine in the pineal invitro in organ culture.  相似文献   

5.
6.
M Zatz 《Federation proceedings》1979,38(12):2596-2601
Photoentrainment of circadian rhythms in mammals is mediated by the retinohypothalamic projection to the suprachiasmatic nucleus of the hypothalamus. It should therefore be possible to mimic or block the effects of light on the circadian pacemaker with appropriate pharmacological agents. Such agents and their effects should be useful in identifying the neurotransmitters involved in photoentrainment and their mechanisms of action on the circadian pacemaker. The effects of light on the circadian rhythm in rat pineal serotonin N-acetyltransferase activity are described. Carbachol, a cholinergic agonist, was found to mimic the effects of light on this rhythm, including the acute reduction of nocturnal activity and phase-shifting of the free-running rhythm. These results raise the possibility that acetylcholine is involved in the photoentrainment of mammalian circadian rhythms.  相似文献   

7.
8.
Circadian rhythm of histamine in the pineal gland   总被引:1,自引:0,他引:1  
The stimulating effects of 2-guanidinbenzimidazole and phentolamine on sodium transport through the isolated skin of the frog Rana esculenta are described. These substances only act when added to the epithelial side, suggesting that they affect the permeability of the external barrier of sodium compartment. The role of the imidazole group in the activation of sodium transport is discussed.  相似文献   

9.
10.
M M?ller  P E H?yer 《Histochemistry》1979,59(4):259-269
Succinate dehydrogenase activity was investigated histochemically in the rat pineal gland. The influence of fixation on the activity pattern, the possible diffusion of enzyme, the nothing dehydrogenase reaction, and the substantivity of the tetrazolium salts and formazans were investigated in control experiments. In rats maintained on a 17/7 h light/dark schedule a distinct circadian rhythm of the succinate dehydrogenase was demonstrated in the pineal gland. Activity was lowest during the day and highest during the night. The dorsocaudal part of the gland showed the highest activity and within the same part of the gland the activity varied between individual pinealocytes. A relative lack of endogenous coenzyme Q, as well as a circadian rhythm of this coenzyme, highly influenced the activity of succinate dehydrogenase. It is concluded that succinate dehydrogenase activity in the pineal gland of the rat is regulated by changing the concentration of the active enzyme itself as well as the level of the endogenous coenzyme Q. Whether this is caused by a circadian rhythm in the synthesis or in the catabolism of the enzyme and the coenzyme was not revealed by the present study .  相似文献   

11.
Summary Entrainment of the circadian rhythm in the pineal N-acetyltranferase activity by prolonged periods of light was studied in rats synchronized with a light:dark regime of 1212 h by observing phase-shifts in rhythm after delays in switching off the light in the evening or after bringing forward of the morning onset of light. When rats were subjected to delays in switching off the light of up to 10 h and then were released into darkness, phase-delays of the evening N-acetyltransferase rise during the same night corresponded roughly to delays in the light switch off. However, phasedelays of the morning decline were much smaller. After a delay in the evening switch off of 11 h, no N-acetyltransferase rhythm was found in the subsequent darkness. The evening N-acetyltransferase rise was phase-delayed by 6.2 h at most 1 day after delays. Phase-delays of the morning Nacetyltransferase decline were shorter than phasedelays of the N-acetyltransferase rise by only 0.7 h to 0.9 h at most. Hence, 1 day after delays in the evening switch off, the period of the high night N-acetyltransferase activity may be shortened only slightly. The N-acetyltransferase rhythm was abolished only after a 12 h delay in switching off the light.Rats were subjected to a bringing forward of the morning light onset and then were released into darkness 4 h before the usual switch off of light. In the following night, the morning N-acetyltransferase decline, but not the evening rise, was phase advanced considerably. Moreover, when the onset of light was brought forward to before midnight, the N-acetyltransferase rise was even phase-delayed. Hence, 1 day after bringing forward the morning onset of light, the period of the high night N-acetyltransferase activity may be drastically reduced. When rats were subjected to a 4 h light pulse around midnight and then released into darkness, the N-acetyltransferase rhythm in the next night was abolished.The data are discussed in terms of a two-component pacemaker controlling the N-acetyltransferase rhythm. It is suggested that delays in the evening switch off of light may disturb the N-acetyltransferase rhythm the next day only a little, as the morning component may adjust to phasedelays of the evening component almost within one cycle. On the other hand, bringing forward the morning onset of light may disturb the N-acetyltransferase rhythm heavily the next day, as the evening component not only does not adjust to phase-advances of the morning component, but it may even be phase-delayed when the light onset occurs before midnight.Abbreviations NAT N-acetyltransferase - PRC phase response curve - E evening component of the N-acetyltransferase rhythm or of its pacemaker - M morning component of the N-acetyltransferase rhythm or of its pacemaker - LD xy light dark cycle comprising x h of light and y h of darkness  相似文献   

12.
13.
Summary Succinate dehydrogenase activity was investigated histochemically in the rat pineal gland. The influence of fixation on the activity pattern, the possible diffusion of enzyme, the nothing dehydrogenase reaction, and the substantivity of the tetrazolium salts and formazans were investigated in control experiments.In rats maintained on a 17/7 h light/dark schedule a distinct circadian rhythm of the succinate dehydrogenase was demonstrated in the pineal gland. Activity was lowest during the day and highest during the night. The dorsocaudal part of the gland showed the highest activity and within the same part of the gland the activity varied between individual pinealocytes. A relative lack of endogenous coenzyme Q, as well as a circadian rhythm of this coenzyme, highly influenced the activity of succinate dehydrogenase. It is concluded that succinate dehydrogenase activity in the pineal gland of the rat is regulated by changing the concentration of the active enzyme itself as well as the level of the endogenous coenzyme Q. Whether this is caused by a circadian rhythm in the synthesis or in the catabolism of the enzyme and the coenzyme was not revealed by the present study.  相似文献   

14.
The biochemical mechanisms involved in circadian variations of the activity of ornithine decarboxylase (EC 4.1.1.17)--the rate-limiting enzyme of polyamine biosynthesis in rat pineal gland were studied. The enzyme was separated from its endogenous high molecular weight inhibitor by gel-filtration of the cytosol fraction from this organ through Sephadex G-100 in the presence of 250 mM NaCl. The inhibitor was similar in its molecular weight (30 000) and activity to ornithine decarboxylase inhibior from rat liver. The amount of the enzyme in the pineal gland undergoes much smaller circadian variations as compared to that of the inhibitor. It is concluded that the circadian variations of the ornithine decarboxylase activity in the pineal gland may be largely due to the changes in the enzyme/inhibitor ratio.  相似文献   

15.
Arginine vasopressin (AVP), oxytocin (OT) and neurophysins (Np) have been found in the pineal gland and the retina of the rat. Because the retina, pineal gland and Harderian gland (HG) serve analogous functions, we undertook a study to determine the presence of these peptides in these three organs of rats. They were detected by two specific methods: HPLC and specific radioimmunoassays. For Np, total neurophysins (NpT) were measured. To determine a 24 hr rhythm, the animals were maintained under a light/dark cycle of 12 hr/12 hr for 3 weeks. The pineal glands, retinae and HG were collected. Day/night rhythms of AVP, OT and NpT were demonstrated in the retina and HG; but the pineal gland had only AVP rhythm. A significant decrease in the rhythms at 4 a.m. was demonstrated in the retina and HG. The 24 hr variation of AVP in the retina seemed parallel to that of the HG.  相似文献   

16.
To elucidate entrainment of a pacemaker controlling the N-acetyltransferase (NAT) rhythm in the rat pineal gland, we studied the phase response curves (PRCs) of this rhythm. We exposed 50- to 60-day-old male Wistar rats maintained in a light-dark cycle (LD 12:12) to a 1-min light pulse at different times before midnight or at various times throughout the whole night. We then released them into constant darkness and studied the morning NAT decline during the night when rats were pulsed before midnight, as well as the evening NAT rise and the morning decline after 4 days following the pulses. The PRC for the first NAT decline and the PRCs for the NAT rise and decline after 4 days were compared with published transient PRCs (Illnerová and Van?cek, 1982b), in order to obtain a complete picture of the dynamics of the NAT rhythm entrainment during the transient cycles. Phase delays in the NAT rise due to a pulse before midnight were complete (i.e., identical to those of day 4) on day 1. Phase delays in the NAT decline were almost complete on day 1, while incomplete phase delays were observed on day 0. Phase advances in the NAT rise and decline due to a pulse past midnight had different dynamics: Advances in the decline were complete on day 1, while advances in the rise were absent on day 1 and much smaller than in the decline on day 4. The results are discussed in terms of a two-component (E-M) pacemaker controlling the NAT rhythm. The NAT rise may reflect the phase of the E-component, while the decline reflects the M-component. Phase delays of the E-component are accomplished within one cycle, and so are phase advances of the M-component. However, although delays of E already result in delays of M one cycle after the pulse, it takes several transient cycles before advances of M begin to induce advances of E.  相似文献   

17.
The circadian rhythm in rat pineal N-acetyltransferase (NAT) activity, which drives the rhythm in melatonin production, is controlled by a pacemaker located in the suprachiasmatic nucleus of the hypothalamus. As the NAT rhythm has two well-defined phase markers--namely, the time of the evening activity rise and of the morning decline--it is suitable for studies of the entrainment of the pacemaker by environmental light. Phase delays of the NAT rhythm proceed more rapidly than phase advances. One day after a brief light pulse applied before midnight, or after a delay in evening lights-off, or a delay of a light-dark (LD) cycle, phase delays of the evening NAT rise result in almost corresponding delays of the morning NAT decline. Consequently, the NAT rhythm is phase-shifted, but its pattern does not change. One day after a brief light pulse applied past midnight, or after bringing forward morning lights-on, or after an advance of an LD cycle, the morning NAT decline is phase-advanced, but the evening rise is not phase-advanced at all or may even by phase-delayed. Consequently, the phase relationship between the evening NAT activity onset and the morning offset may be compressed considerably, and it may take several transient cycles before phase advances of the morning NAT decline are followed by corresponding advances of the evening NAT rise. Due to the phase-delaying effect of evening light on the NAT rise and to the phase-advancing effect of morning light on the NAT decline, the phase relationship between the NAT rise and the decline is compressed on long days and decompressed on short days. Different phase shifts of the evening NAT rise and of the morning decline, even in opposite directions, are consistent with the hypothesis of a complex, two-component (evening-morning, or E-M) pacemaker controlling the NAT rhythm. As the E-M phase relationship determines duration of the high night melatonin production, and the duration of the nocturnal melatonin pulse may convey information on daylength, the data are consistent with the internal coincidence model for photoperiodic time measurement.  相似文献   

18.
During resetting of the mammalian circadian clock, not only phase of the clock is shifted, but amplitude of overt rhythms driven by the clock may be temporarily reduced or even abolished. The present paper is aimed to elucidate the mechanism of amplitude reduction of the overt circadian rhythm in the rat pineal N-acetyltransferase (NAT). The rhythm has two phase markers, namely the time of the evening NAT rise and that of the morning decline. When the phase relationship between both markers is compressed drastically, the NAT rise may occur just close to or at the time of the decline and consequently the NAT rhythm with a full amplitude cannot be expressed. Such a compression may occur in two ways: either animals are subjected to a considerable advance in the light onset which phase advances the morning NAT decline and at the same time phase delays the evening NAT rise, or they are subjected to a considerable delay in the light offset, which primarily phase delays more the NAT rise than the decline. While in the former case the phase markers move in opposite directions, in the latter case they move in the same direction, but to a different extent. The data suggest a complex structure of the underlying clock.  相似文献   

19.
Monoamine-oxidase (MAO) activity was detected in rat pineal gland with dopamine, 5-hydroxytryptamine (5-HT), norepinephrine and tryptamine as substrates, and nitroblue tetrazolium salt as electron acceptor. Pinealocytes stained deeply when 5-HT was the substrate. Dopamine and tryptamine substrates gave similar patterns, with moderate activity in the pinealocytes. Norepinephrine reactivity was detected in the nerve-endings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号