首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme nitrate reductase could not be detected in leaf tissuesof cauliflower plants grown in sterile cultures with glutamicacid or ammonium sulphate if nitrate was absent. Excised leaftissues from these plants formed the enzyme for several hoursat a steady rate when infiltrated with nitrate. Plants starvedof nitrate for short periods lost enzyme activity which wasrestored in excised tissues upon infiltration with nitrate butnot with ammonium sulphate or nitrite. Molybdenum-deficientplants grown with nitrate also lacked enzyme activity whichwas restored in excised tissues after infiltration with molybdenum.Both nitrate and molybdenum were required to produce maximalrates of enzyme formation in excised tissues of plants grownwith ammonium sulphate and no molybdenum. Apparent Michaelisconstants for nitrate and molybdenum were found to be about10-5 and 10-7 respectively. The capacity of excised tissuesto respond to the inducer varied with their age and leaf positionon the plant and was exercised under conditions where growthwas unlikely. Increases in specific activities were similar.There was no evidence of a lag in response to nitrate or molybdenumwith tissues of plants grown with ammonium sulphate or glutamicacid in sterile cultures but lag periods were observed withtissues from plants deprived of nitrate. Cell-free preparationswere unable to respond to either factor. The results are interpretedas evidence for induced enzyme formation in vivo in responseto the substrate or the constituent metal.  相似文献   

2.
在微囊藻的大量培养过程中分离到一株能够快速吞噬微囊藻的鞭毛虫-金藻Poterioochromonas sp.,其具有混和营养的特点。研究以人工培养的铜绿微囊藻(Microcystis aeruginosa FACHB469)为饵料,研究了起始饵料浓度、光强、温度和pH等环境因子对Poterioochromonas sp.生长和吞噬饵料速率的影响。结果显示:当无饵料时,金藻的自养生长与光强和温度相关,而与pH无相关性。喂食饵料能显著促进金藻的生长,其吞噬速率和生长速率与起始饵料浓度相关性强,可分别用Michaelis-Menten方程和Monod方程拟合。提供相同量的饵料时,金藻的生长与光强相关性显著,而与温度和pH的相关性不显著;其吞噬速率与pH呈现负相关关系,而与光强和温度相关性不显著。除了在不同pH下的生长外,混合营养时金藻的生长速率与吞噬速率之间存在显著的正相关关系。实验表明适于Poterioochromonas sp.生存并吞噬微囊藻的环境条件较广,这也是进一步探索利用Poterioochromonas sp.控制微囊藻水华的前提。    相似文献   

3.
Oxygen inhibited the rate of light-saturated photosynthesis of the marine diatom Phaeodactylum tricornutum Bohlin. However, inhibition could only be detected with O2 concentrations approaching 100%. Atmospheric concentrations of O2 (21%) had little effect on photosynthesis. In this, Phaeodactylum more closely resembles the so-called C-4 plants which show low rates of photorespiration. The results presented here agree with others in showing increased O2 inhibition at reduced bicarbonate concentrations. The biochemical mechanism of photorespiration in Phaeodactylum appears to be similar to that reported for other photosynthetic systems. The activity of ribulose-1,5 diphosphate (RuDP) carboxylase in cell-free extracts was also inhibited, by oxygen. Inhibition by O2 was optimal at pH 9.2 as was the RuDP-dependent O2 uptake. RuDP carboxylase/oxygenase ratios decreased with increasing pH and were greater in cells grown at lower light intensities. Carboxylase levels were less affected by the light intensity for growth than were the levels of the oxygenase. Short-term incorporation of NaHCO3-14C by cells grown at high light intensities showed increased labelling of glycolate and glycine plus serine under O2 compared with nitrogen. There was a concomitant decrease in the radioactivity found in phosphoglyeric acid (PGA) and sugar phosphates in the presence of O2. The effects of O2 on the short-term pattern of photosynthesis were less marked when the alga was previously grown at low light intensities.  相似文献   

4.
When a crude extract from 8-day-old wheat (Triticum aestivum L. cv. Olympic) leaves was fractionated by a combination of ammonium sulfate precipitation and Sephadex G-100 chromatography the presence of three factors which have a marked effect on the stability of highly purified nitrate reductase was revealed. Two of these factors (I and III) have a positive effect and the other factor (II) has a negative effect on stability. Factors I and III can each overcome the instability-promoting effect of II; however, this was apparently not due to a direct effect on factor II.  相似文献   

5.
The use of 11C as a tracer has allowed repetitive measurementsof the speed of assimilate translocation to be made on singlemaize plants throughout prolonged periods of light and darkness.The speed appeared to double when the light was switched on.The time required to achieve a maximum speed, usually about3·5 cm min–1, depended on the duration of the previousdark period. When the plant was transferred to darkness thespeed immediately decreased by about 20 per cent and continuedto decrease over the next 20 h to values of 0·5 to 0·9cm min–1. The mean speed of translocation in tomato in the light, andother C3 plants, was usually about 1 cm min–1. It wasreduced by 15–30 per cent when the fruit was removed orcooled from 26 to 10°C.  相似文献   

6.
Nitrate reductase activity (in vivo method, substrate non-limiting)in unshaded leaves from the top of the canopy has been determinedfor field-grown potato plants over the course of the growingseason. The pattern of change was almost identical for plantsreceiving no added fertilizer and those receiving 24 g N m–2.Activity increased to a peak at about 90 days after plantingand declined thereafter. On a fresh weight basis activity wasalways higher in fertilized plants. Nitrate reductase activitywas positively and significantly correlated with leaf proteincontent in high N plants (r2 = 0.71; P = 0.05), but poorly correlatedwith both the nitrate content of the leaf lamina and the nitrateconcentration in petiole sap. Up until 90 days after planting(mid-July) there appeared to be a positive relationship betweenincreased activity of nitrate reductase and solar radiation.However, results obtained over two seasons showed that the declinein activity after this time was not consistently linked witha fall in the level of solar radiation. Remobilization of reduced-Nand stored nitrate from leaves and stems accompanied this declinein nitrate reductase activity and in the latter part of theseason appeared to account for all of the N gained by growingtubers. In unfertilized plants nitrate-N accounted for 5 per cent orless of total plant N. Fertilized plants contained up to 25per cent nitrate-N. While nitrate availability limited growthin unfertilized plants, sub-optimal rates of nitrate assimilationin fertilized plants, particularly during the early stages ofpost-emergence growth, may contribute to inefficient use ofacquired nitrate. The carbohydrate status of leaf lamina and petiole sap weremodified by N supply. The soluble sugar and starch contentsof low N leaves were higher than in their high N counterparts.By contrast, the concentration of soluble sugars in petiolesap increased to a higher value in high N samples. Althoughsap sugar levels declined in both treatments towards the endof the season, N application delayed this decline for severalweeks. Solanum tuberosum, nitrate reductase, nitrate assimilation, senescence  相似文献   

7.
Cultures of Lemna gibba L. G3 were maintained at a constant, N-limited growth rate by adding nitrate daily in amounts calculated to sustain a rate of culture N increment of 0.20 day−1. Nitrate added to the culture was consumed within 8 to 10 hours and the partitioning to reduction and accumulation during this phase corresponded to, on the average, 75 and 25% of net uptake, respectively. The calculated rate of nitrate reduction was stimulated by onset of net uptake without delay and decreased when net uptake ceased. NADH-nitrate reductase (NR) activity measured in vitro without inclusion of antiproteolytic agents more than doubled during the first hour after nitrate addition and then gradually fell to its original level over the rest of the 24 hour interval. In the presence of the proteinase inhibitor leupeptin during extraction, however, NR activity was in general much higher and without any apparent cycles. The relative stabilizing effect of leupeptin was greatest on NADH-NR and reduced flavin adenine mononucleotide-NR activities whereas the effect was less on NADH-cytochrome c reductase activity (diaphorase) and reduced methylviologen-NR activity. The constant nitrate reductase activity measured in the presence of proteinase inhibitors is assumed to reflect the physiological situation. It thus appeares that short-term changes in nitrate assimilation by N-limited Lemna is related to the flux of nitrate to the reducing site and not to changes in nitrate reductase activity.  相似文献   

8.
Cultures of the marine diatom Phaeodactylum tricornutum Bohlin incorporated, a large proportion of the total fixed carbon (50% or more) into amino acids and amides during short periods of photo-assimilation of 14C-labelled carbon dioxide. Although increasing nitrogen limitation in a nitrate-limited chemostat had little significant effect on the proportion of C incorporated into amino acids and amides combined, it did affect the distribution of radioactivity within individual compounds of this group. In particular, increasing degrees of N deficiency reduced the proportion incorporated into amides to almost undetectable levels, reduced the proportion in alanine and increased the proportion in glutamic acid. Also, increasing N limitation decreased the relative synthesis of sugar phosphates and increased the proportion of C assimilated into intermediates of the tricarboxylic acid cycle. Reduced light intensity did not have any significant effect on the proportion of C incorporated into the total amino acids and amides, but did cause a decrease in the radioactivity  相似文献   

9.
Frequencies, timing, and spatial patterns of co-suppression of the nitrate (Nia) and nitrite (Nii) genes were analyzed in transgenic tobacco (Nicotiana tabacum) plants carrying either Nia or Nii cDNAs under the control of the 35S promoter, or a Nii gene with its own regulatory signals (promoter, introns, and terminator) cloned downstream of two copies of the enhancer of the 35S promoter. We show that (a) the frequencies of transgenic lines affected by co- suppression are similar for the three constructs, ranging from 19 to 25%; (b) Nia and Nii co-suppression are triggered stochastically during a phenocritical period of 2 weeks between germination and flowering; (c) the timing of co-suppression (i.e. the percentage of isogenic plants affected by co-suppression reported as a function of the number of days of culture) differs from one transgenic line to another; (d) the percentage of isogenic plants affected by co-suppression is increased by growing the plants in vitro prior to their transfer to the greenhouse and to the field; and (e) at the end of the culture period, plants are either unaffected, completely co-suppressed, or variegated. Suppressed and nonsuppressed parts of these variegated plants are separated by a vertical plane through the stem in Nia co-suppression, and separated by a horizontal plane in Nii co-suppression.  相似文献   

10.
11.
Plants of two genotypes of Lolium perenne L. cv. S23 and a L.perenne ? L. multiflorum Lam. hybrid cv. Augusta were grownin flowing solution culture. N was suppled in one treatmentat 10 mmol m–3 NO–3 throughout (HN), and in another(LN) the N supply was terminated after 10 d for 11 d. When was re-supplied both LN and HN plants were leftentire or defoliated. The two genotypes showed similar responsesto all treatments. The concentration of N in shoot dry matterdeclined from 4.4% to 2.0% and in the root from 2.8% to 1.0%over the 11 d of N deprivation, with 95% of the initially present being assimilated during this period. LN plantsassimilated 10% more of their total uptake than did HN plants. The in vitro nitrate reductase activity(NRA) was 10- to 50-fold higher in the youngest fully-expandedleaves than in roots and declined in the leaves during N deprivation.Between 2–6 d after defoliation, there was a large increasein NRA in leaves of HN (but not LN) plants. After defoliationof HN plants, net uptake from 10 mmol m–3 declined to negligible levels within 15 h, but in defoliatedLN plants it increased to levels similar to those of entireHN plants (15–20 µmol h–1 g–1 fr. wt.root) within 8 h. When was re-supplied to entire LN plants, uptake of increased to levels similar to those of entire HN plants within 2.3 h, butdid not markedly exceed that of HN plants for at least 10 h.Net uptake of by LN plants during depletion of stirred static nutrient solutions containing 1.0 mol m–3 lagged behind that by HN plants by 70–100 min, but the maximum unit absorption rate was similar for LNand HN plants (5–7 µmol h–1 g–1 fr.wt. root). The nature of the short-term demand for uptake following recovery from the stresses of defoliation andN starvation is discussed. Key words: Lolium perenne, Lolium multiflorum, N-deficiency, defoliation, nitrate uptake, nitrate reductase, N-assimilation  相似文献   

12.
13.
1. Wide differences in the intensity of incident ultra violet energy are not accurately compensated by corresponding changes in the exposure time, so that the Bunsen-Roscoe reciprocity law does not hold, strictly, especially for bactericidal action on young, metabolically and genetically active bacteria. In the present series of experiments, however, the energies used at various wave lengths did not differ by so much as to cause a significant error in the reported reactions. 2. The longer wave length limit of a direct bactericidal action on S. aureus was found to be between 302 and 313 mµ. The shorter limit was not determined because the long exposures required vitiate quantitative results. Bactericidal action was observed at λ225 mµ. 3. The temperature coefficient of the bactericidal reaction approaches 1 and thus furnishes empirical evidence that the direct action of ultra violet light on bacteria is essentially physical or photochemical in character. 4. The hydrogen ion concentration of the environment has no appreciable effect upon the bactericidal reaction between the limits of pH 4.5 and 7.5. At pH 9 and 10 evidence of a slight but definite increase in bacterial susceptibility was noted, but this difference may have been due to a less favorable environment for subsequent recovery and multiplication of injured organisms. 5. Plane polarization of incident ultra violet radiation has no demonstrable effect upon its bactericidal action. In a third paper of this group the ratios of incident to absorbed ultra violet energy at various wave lengths and the significance of these relations in an analysis of the bactericidal reaction will be discussed.  相似文献   

14.
Steer BT 《Plant physiology》1974,54(5):762-765
Nitrate accumulates in the leaves of Capsicum annuum L. cv. California Wonder and the leaf content is dependent on the nitrate level supplied to the roots. There is no consistent diurnal periodicity in the leaf nitrate levels.  相似文献   

15.
16.
Time-courses of light-induced activities of enzymes relatingto anthocyanin formation were studied. Phenylalanine ammonia-lyase(PAL), 4-cumarate CoA ligase (4CL) and cinnamate-4-hydroxylase(C4H) (group 1 enzymes) and chalcone synthase (CHS) and chalcone-flavanoneisomerase (CHFI) (group 2 enzymes), were studied in carrot suspensioncells which were irradiated 5 d after transfer to a 2,4-dichlorophenoxyaceticacid (2,4-D)-free medium in the dark. Time-courses of group1 enzymes showed two peaks (fast and slow) with the slow peakincreasing almost parallel to anthocyanin accumulation. Time-coursesof group 2 enzymes showed one peak corresponding to the slowpeak of group 1. From the inhibitor experiment, the fast peakalso corresponded to the activity of the newly synthesized enzyme.From the initial phase of the time-courses, enzymes belongingto group 1 always induced more rapidly than those of group 2,and their induction was co-operative. However, once anthocyanin synthesis was induced by light, neitheraddition of 2,4-D nor transfer to darkness could prohibit anthocyaninsynthesis completely. Addition of 2,4-D in the dark completelysuppressed anthocyanin synthesis within 1 d and the activityof CHS also disappeared within 1 d. These results are explainedby a previous hypothesis (Takeda, 1988) that 2,4-D induces thestate change of cells. Key words: Anthocyanin, co-ordinate induction, Daucus carota, 2,4-dichlorophenoxyacetic acid, light-triggered  相似文献   

17.
Three species of shrubs (Ericaceae) were found to segregate upon the northeast and southwest slopes of spur ridges on Brush Mountain, in southwestern Virginia. Rhododendron maximum was found only in valleys and lower northeast slopes, Rhododendron periclymenoides = R. nudiflorum) was found on northeast slopes while Kalmia latifolia was most abundant on southwest slopes. Previous vegetation studies indicated that these partially segregated distributions were related to irradiance and water availability. In field studies of water potential, R. periclymenoides had the lowest diurnal leaf water potentials and the largest seasonal variation in midday leaf water potential. Kalmia latifolia had the highest leaf conductance in field and phytotron experiments. Rhododendron maximum had the greatest seasonal osmotic adjustment followed by R. periclymenoides and K. latifolia. In phytotron experiments, the photosynthetic capacity of R. maximum was the most sensitive to water stress followed by R. periclymenoides and K. latifolia. Kalmia latifolia was able to modify its conductance rates to reduce water loss and maintain constant leaf water potential minimizing photosynthetic inhibition. Rhododendron periclymenoides showed extreme luxury spending of water indicated by high conductance and low photosynthesis. The ecophysiological responses to water and irradiance provided an explanation for the distributions of the three species. For example, R. maximum leaves are sensitive to elevated irradiance, and carbon gain is strongly influenced by water stress. Thus, R. maximum will perform best in low irradiance environments with ample water, such as valley sites. Each species had a unique set of adaptations for performing best in their optimum habitat.  相似文献   

18.
The uptake and translocation of griseofulvin from water cultureby broad bean and tomato has been studied; observations werealso made on its decay in broad bean. In most cases griseofulvinwas determined by bioassay. Where possible the bioassay waschecked by chemical estimations and was found to be adequate. The amount of griseofulvin taken up by the broad bean was proportionalto the volume of water transpired for any single concentrationof the treating solution and the decay was exponentially relatedto the time of exposure in the tissues. The accumulation ofgriseofulvin in the tissue had, therefore, an exponential componentbut within the limits of error there was constant relationshipbetween accumulation and transpiration over the time periodsused in the trials. The rate of accumulation in tomato was alsoconstant. The amount of griseofulvin accumulated by both beanand tomato after a definite time was a linear function of theconcentration of the treating solution. There were two processes involved in the uptake of griseofulvinby the broad bean: (a) an initial rapid entry into the rootswhich was inhibited by sodium azide and dinitrophenol at concentrationswhich did not reduce transpiration; and (b) a prolonged uptakelinearly related to transpiration which was not affected bythese concentrations of the inhibitors.  相似文献   

19.
The spatial structuring of intraspecific genetic diversity is the result of random genetic drift, natural selection, migration, mutation, and their interaction with historical processes. The contribution of each has been typically difficult to estimate, but recent advances in statistical genetics have provided valuable new investigative tools to tackle such complexity. Using a combination of such methods, we examined the roles of environment (i.e., natural selection), random genetic processes (i.e., drift), and demography and life histories (e.g., feeding migrations) on population structure of a widely distributed and abundant marine pelagic fish of economic importance, Atlantic herring ( Clupea harengus ). Individuals were collected during peak spawning time from 19 spawning locations spanning the region from the western North Sea to the eastern Baltic Sea ( N = 1859, eight microsatellite loci). We carried out separate analyses of neutral and selected genetic variation, which allowed us to establish that the two most important factors affecting population structure were selection due to salinity at spawning sites and feeding migrations. The genetic signal left by the demographic history of herring, on the other hand, seems to have been largely eroded, which is not surprising given the large reproductive potential and presumed enormous local effective population sizes of pelagic fish that constrain the effect of stochastic processes. The approach we used can in principle be applied to any abundant and widely distributed aquatic or terrestrial species.  相似文献   

20.
Nitrogen assimilation in three nitrate reductase (NR) mutants of soybean (Glycine max L. Merr. cv Williams) was studied in the growth chamber and in the field. These mutants, LNR-2, LNR-3, and LNR-4, lack the non-NO3-inducible or constitutive fraction of leaf NR activity found in wild-type plants, but this had no effect on the concentration of nitrogen accumulated when grown on NO3 in the growth chamber. Dry weight accumulation of two of the mutants (LNR-3 and LNR-4) was decreased relative to LNR-2 and wild type. In the field, LNR-2 had dry weights and nitrogen concentrations similar to the wild type at 34 and 61 days after planting, and at maturity. Acetylene reduction activities were also similar at 61 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号