首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 2 diabetes as an inflammatory cardiovascular disorder   总被引:7,自引:0,他引:7  
Type 2 diabetes carries a 2-6-fold increased risk of cardiovascular disease (CVD) and death. Indeed, the risk of major cardiovascular events in Type 2 diabetic patients without history of coronary heart disease (CHD) is equivalent to that observed in non-diabetic subjects with CHD. However, atherosclerosis may also precede the development of diabetes, suggesting that both disorders share common genetic and environmental antecedent factors ("common soil" hypothesis). One such a possible ancestor is insulin resistance which constitutes both a major feature of Type 2 diabetes and an independent risk factor for CHD. It is well documented that inflammatory processes play an important role in the causation of atherosclerotic CVD. Inflammatory mediators play a paramount role in the initiation, progression, and rupture of atherosclerotic plaques. Thus, markers of inflammation and endothelial dysfunction may provide additional information about a patient's risk of developing CVD and may become new targets for treatment. On the other hand, evidence has emerged suggesting that inflammation is also involved in the development of Type 2 diabetes. Prospective studies have demonstrated that increased levels of pro-inflammatory markers such as CRP or reduced levels of anti-inflammatory markers such as adiponectin predict the development of Type 2 diabetes. Thus, there is accumulating evidence suggesting that inflammation is the bridging link between atherosclerosis and the metabolic syndrome. Interventions by lifestyle modification or agents with anti-inflammatory properties may reduce the risk of both conditions. Drugs exerting anti-inflammatory and vascular effects have future potential to be used within an array of interventions aimed at reducing the enormous cardiovascular burden associated with Type 2 diabetes.  相似文献   

2.
PURPOSE OF REVIEW: The prevalence of type 2 diabetes globally is reaching epidemic proportions. Type 2 diabetes is strongly associated with increased risk of cardiovascular disease. Atherosclerosis is thought to arise as a result of a chronic inflammatory process within the arterial wall. Insulin resistance is central to the pathogenesis of type 2 diabetes and may contribute to atherogenesis, either directly or through associated risk factors. The peroxisome proliferator-activated receptor-gamma agonists, the thiazolidinediones, pioglitazone and rosiglitazone, are insulin sensitizing agents, that are licensed for the management of hyperglycaemia. Growing evidence supports an array of additional effects of thiazolidinedione therapy, both immunomodulatory and antiinflammatory, which may attenuate atherogenesis in type 2 diabetes. RECENT FINDINGS: Studies have shown that thiazolidinedione therapy may lead to risk factor modulation in type 2 diabetes. Thiazolidinediones treatment has been shown to reduce blood pressure, modify the atherogenic lipid profile associated with type 2 diabetes, reduce microalbuminuria and ameliorate the prothrombotic diathesis. Further evidence suggests that thiazolidinediones therapy inhibits the inflammatory processes which may be involved in atherosclerotic plaque initiation, propagation and destabilization. SUMMARY: Modification of insulin resistance by thiazolidinedione therapy in type 2 diabetes and the range of pleiotropic effects may not only impact on incident type 2 diabetes, but also on associated cardiovascular disease. Numerous large clinical endpoint studies are under way to investigate these issues.  相似文献   

3.
Diabetes mellitus has emerged as one of the main alarms to human health in the 21st century. Pronounced changes in the human environment, behavior and lifestyle have accompanied globalization, which resulted in escalating rates of both obesity and diabetes, already described as diabesity. This pandemic causes deterioration of life quality with high socio-economic costs, particularly due to premature morbidity and mortality. To avoid late complications of type 2 diabetes and related costs, primary prevention and early treatment are therefore necessary. In this context, effective non-pharmacological measures, such as regular physical activity, are imperative to avoid complications, as well as polymedication, which is associated with serious side-effects and drug-to-drug interactions. Our previous work showed, in an animal model of obese type 2 diabetes, the Zucker Diabetic Fatty (ZDF) rat, that regular and moderate intensity physical exercise (training) is able, per se, to attenuate insulin resistance and control glycaemia, dyslipidaemia and blood pressure, thus reducing cardiovascular risk, by interfering with the pathophysiological mechanisms at different levels, including oxidative stress and low-grade inflammation, which are key features of diabesity. This paper briefly reviews the wide pathophysiological pathways associated with Type 2 diabetes and then discusses in detail the benefits of training therapy on glycaemic control and on cardiovascular risk profile in Type 2 diabetes, focusing particularly on antioxidant and anti-inflammatory properties. Based on the current knowledge, including our own findings using an animal model, it is concluded that regular and moderate intensity physical exercise (training), due to its pleiotropic effects, could replace, or at least reduce, the use of anti-diabetic drugs, as well as of other drugs given for the control of cardiovascular risk factors in obese type 2 diabetic patients, working as a physiological "polypill".  相似文献   

4.
Although diabetes mellitus is predominantly a metabolic disorder, recent data suggest that it is as much a vascular disorder. Cardiovascular complications are the leading cause of death and disability in patients with diabetes mellitus. A number of recent reports have emphasized that many patients already have atherosclerosis in progression by the time they are diagnosed with clinical evidence of diabetes mellitus. The increased risk of atherosclerosis and cardiovascular complications in diabetic patients is related to the frequently associated dyslipidemia, hypertension, hyperglycemia, hyperinsulinemia, and endothelial dysfunction. The evolving knowledge regarding the variety of metabolic, hormonal, and hemodynamic abnormalities in patients with diabetes mellitus has led to efforts designed for early identification of individuals at risk of subsequent disease. It has been suggested that insulin resistance, the key abnormality in type II diabetes, often precedes clinical features of diabetes by 5–6 years. Careful attention to the criteria described for the cardiovascular dysmetabolic syndrome should help identify those at risk at an early stage. The application of nonpharmacologic as well as newer emerging pharmacologic therapies can have beneficial effects in individuals with cardiovascular dysmetabolic syndrome and/or diabetes mellitus by improving insulin sensitivity and related abnormalities. Early identification and implementation of appropriate therapeutic strategies would be necessary to contain the emerging new epidemic of cardiovascular disease related to diabetes.  相似文献   

5.
The prevalence and impact of type 2 diabetes are reaching epidemic proportions in the United States. Data suggest that effective management can reduce the risk for both microvascular and macrovascular complications of diabetes. In treating patients with diabetes, physicians must be prepared not only to tailor the initial treatment to the individual and his or her disease severity but also to advance treatment as necessary and in step with disease progression. The majority of patients with diabetes are not at goal for glycated hemoglobin A1C, fasting plasma glucose, or postprandial plasma glucose levels. Although lifestyle changes based on improved diet and exercise practices are basic elements of therapy at every stage, pharmacologic therapy is usually necessary to achieve and maintain glycemic control. Oral antidiabetic agents may be effective early in the disease but, eventually, they are unable to compensate as the disease progresses. For patients unable to achieve glycemic control on 2 oral agents, current guidelines strongly urge clinicians to consider the initiation of insulin as opposed to adding a third oral agent. Recent research suggests that earlier initiation of insulin is more physiologic and may be more effective in preventing complications of diabetes. Newer, longer-lasting insulin analogs and the use of simplified treatment plans may overcome psychological resistance to insulin on the part of physicians and patients. This article summarizes the risks associated with uncontrolled fasting and postprandial hyperglycemia, briefly reviews the various treatment options currently available for type 2 diabetes, presents case vignettes to illustrate crossroads encountered when advancing treatment, and offers guidance to the osteopathic physician on the selection of appropriate treatments for the management of type 2 diabetes.  相似文献   

6.
Oxidative stress has been implicated as a contributor to both the onset and the progression of diabetes and its associated complications. Some of the consequences of an oxidative environment are the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance, and mitochondrial dysfunction, which can lead ultimately to the diabetic disease state. Experimental and clinical data suggest an inverse association between insulin sensitivity and ROS levels. Oxidative stress can arise from a number of different sources, whether disease state or lifestyle, including episodes of ketosis, sleep restriction, and excessive nutrient intake. Oxidative stress activates a series of stress pathways involving a family of serine/threonine kinases, which in turn have a negative effect on insulin signaling. More experimental evidence is needed to pinpoint the mechanisms contributing to insulin resistance in both type 1 diabetics and nondiabetic individuals. Oxidative stress can be reduced by controlling hyperglycemia and calorie intake. Overall, this review outlines various mechanisms that lead to the development of oxidative stress. Intervention and therapy that alter or disrupt these mechanisms may serve to reduce the risk of insulin resistance and the development of diabetes.  相似文献   

7.
《Insulin》2007,2(1):31-36
Background: The benefits of tight glycemic control in preventing the onset and progression of microvascular complications in patients with type 2 diabetes mellitus (DM) are unarguable. The majority of patients with type 2 DM will eventually require insulin to achieve adequate glycemic control. Using insulin earlier rather than later in the course of type 2 DM may diminish the deleterious effects of hyperglycemia on β-cell function and therefore help prolong good glycemic control and prevent the occurrence of microvascular complications. However, weight gain is a potential adverse effect of insulin therapy.Objective: The goal of this article was to describe the benefit of insulin therapy early in the course of type 2 DM, review the association of weight gain with insulin therapy, and examine potential detrimental effects that insulin-associated weight gain could have in patients with type 2 DM.Methods: Materials used for this article were identified through a search of MEDLINE (1966–2006). English-language articles were chosen using the search terms diabetes mellitus type 2, insulin, and obesity.Results: Intensive insulin therapy is often associated with weight gain. Although there is concern that weight gain in patients with type 2 DM may have adverse effects on risk factors for cardiovascular disease, unfavorable changes in blood pressure and lipid levels have not been consistently observed in clinical trials. Furthermore, clinical evidence, including data from the United Kingdom Prospective Diabetes Study, supports the view that intensive insulin therapy does not increase the risk for cardiovascular disease.Conclusions: Early insulin therapy in patients with type 2 DM may be a strategy that will help patients achieve and maintain good glycemic control, thereby reducing the risk of developing microvascular complications. Although weight gain is commonly associated with insulin therapy, it does not appear to put these patients at greater risk for cardiovascular disease.  相似文献   

8.
Metabolic syndrome is characterized by the clustering of a number of metabolic abnormalities in the presence of underlying insulin resistance with a strong association with diabetes and cardiovascular disease morbidity and mortality. The disorder is defined in different ways, but the pathophysiology is attributable to insulin resistance. An increased release of free fatty acids (FFAs) from adipocytes block insulin signal transduction pathway, induce endothelial dysfunction due to increased reactive oxygen species (ROS) generation and oxidative stress. Dyslipidemia, associated with high levels of triglycerides and low concentrations of high density lipoproteins (HDLs), contributes to a proinflammatory state. Inflammation, the key pathogenic component of atherosclerosis, promotes thrombosis, a process that underlies acute coronary event and stroke. Tissue factor, a potent trigger of the coagulation cascade, is increased in diabetes with poor glycemic control. Therapeutic lifestyle changes (weight loss and physical activity) along with pharmacological interventions are recommended to prevent the complications of metabolic syndrome. In addition to statins, metformin, blood pressure lowering medications, interventions to increase HDLs are other important approaches to decrease the risk of cardiovascular disease. Furthermore, the peroxisome proliferator activated receptor (PPAR)-alpha and gamma agonists are potent anti-inflammatory and anti-atherogenic agents that could both improve insulin sensitivity and the long-term cardiovascular risk. In this review we focus on the molecular and pathophysiological basis of metabolic syndrome, which augments diabetes (insulin resistance) and the contribution of neovascularization in the plaque progression in diabetes, leading to rupture and coronary thrombosis.  相似文献   

9.
T2D (Type 2 diabetes mellitus) is a major health issue that has reached epidemic status worldwide. T2D is a progressive metabolic disorder characterized by reduced insulin sensitivity, insulin resistance and pancreatic β-cell dysfunction. Improper treatment of TD2 can lead to severe complications such as heart disease, stroke, kidney failure, blindness and nerve damage. The aetiology and molecular mechanisms of T2D are not fully understood, but compelling evidence points to a link between T2D, obesity, dyslipidaemia and insulin resistance. Although T2D seems to be strongly linked to environmental factors such as nutrition and lifestyle, studies have shown that genetic factors, such as polymorphisms associated with metabolic genes, imprinting, fetal programming and miRNA (microRNA) expression, could also contribute to the development of this disease. miRNAs are small 22-25-nt-long untranslated RNAs that negatively regulate the translation of mRNAs. miRNAs are involved in a large number of biological functions such as development, metabolism, immunity and diseases such as cancer, cardiovascular diseases and diabetes. The present review examines the various miRNAs that have been identified as being potentially involved in T2D, focusing on the insulin-sensitive organs: white adipose tissue, liver, skeletal muscle and the insulin-producing pancreatic β-cells.  相似文献   

10.
Type 2 diabetes mellitus (T2DM) is an increasing problem in childhood; however type 1 diabetes mellitus (T1DM) remains by far the most common type of diabetes in this age group. In this review we will focus on T1DM, because this will have the greatest implication for patients diagnosed in childhood. During the atherosclerotic process, several molecular, receptorial and cellular factors provide a continous mechanism of vascular damage. In diabetic children this state seems to be enhanced and facilitated so that accelerated atherosclerosis is associated with an increased risk of cardiovascular events in respect to the non diabetic population. Hyperglycemia PER SE and associated with diabetes is an important risk factor for atherosclerosis. At present a substantial part of children with diabetes do not reach satisfactory glycemic control. Other risk factors for the development and progression of atherosclerosis may be inherited or develop in the course of the disease: hypertension, dyslipidemia, insulin resistance, obesity, cigarette smoking, physical inactivity, disturbance of platelet function, coagulation and fibrinolysis. The development and progression of atherosclerosis should be blocked at an early age, if possible. Primary prevention to all risk factors for cardiovascular disease is important and intervention is indicated if necessary. At the moment the best therapeutic strategy is to maintain metabolic control at a physiologic level and perform screening and early intervention for vascular complications.  相似文献   

11.
Diabetes is a chronic lifestyle disorder that affects millions of people worldwide. Diabetes is a condition where the body does not produce sufficient insulin or does not use it efficiently. Insulin resistance in diabetes or obesity causes the pancreatic β-cells to increase the insulin output. Diabetes occurs in multiple forms, including type 1, type 2, type 3 and gestational. Type 2 diabetes accounts for ~90–95% of total affected population and is associated with both impaired insulin production by the β-cells of the pancreas and impaired insulin release in response to high blood glucose levels. Diabetes is tightly linked with genetic mutations and genetic and lifestyle activities, including diet and exercise. Recent epidemiological studies established a close link between the diabetes and progression to Alzheimer's disease. This article summarizes various molecular mechanisms involved in the developments of diabetes, including biochemical characteristics, genetic and molecular links with Alzheimer's disease, β-cell function, and factors associated with diabetes. This will help us in the development of novel therapeutic strategies targeting AD in future.  相似文献   

12.
Insulin resistance is defined as a clinical state in which a normal or elevated insulin level produces an attenuated biologic response. Specifically, the biologic response most studied is insulin-stimulated glucose disposal, yet the precise cellular mechanism responsible is not yet known. However, the presence of insulin resistance is observed many years before the onset of clinical hyperglycemia and the diagnosis of Type 2 diabetes. Insulin resistance at this stage appears to be significantly associated with a clustering of cardiovascular risk factors predisposing the individual to accelerated cardiovascular disease. An overview of insulin resistance and the associated clinical insulin resistant state will be discussed.  相似文献   

13.
ABSTRACT: The risk of cardiovascular complication in a diabetes patient is similar to that in a nondiabetic patient with a history of myocardial infarction. Although intensive control of glycemia achieved by conventional antidiabetic agents decreases microvascular complications such as retinopathy and nephropathy, no marked effect has been reported on macrovascular complications or all-cause mortality. Evidence from VADT, ACCORD, and ADVANCE would suggest that glycemic control has little effect on macrovascular outcomes. Moreover, in the case of ACCORD, intensive glycemic control may be associated with an increased risk of mortality. There is sufficient evidence that suggests that postprandial hyperglycemia may be an independent risk factor for cardiovascular disease in diabetes patients. However, there are no prospective clinical trials supporting the recommendation that lowering postprandial blood glucose leads to lower risk of cardiovascular outcomes. Mitiglinide is a short-acting insulinotropic agent used in type 2 diabetes treatment. It has a rapid stimulatory effect on insulin secretion and reduces postprandial plasma glucose level in patients with type 2 diabetes. Because of its short action time, it is unlikely to exert adverse effects related to hypoglycemia early in the morning and between meals. Mitiglinide reduces excess oxidative stress and inflammation, plays a cardioprotective role, and improves postprandial metabolic disorders. Moreover, mitiglinide add-on therapy with pioglitazone favorably affects the vascular endothelial function in type 2 diabetes patients. These data suggest that mitiglinide plays a potentially beneficial role in the improvement of postprandial hyperglycemia in type 2 diabetes patients and can be used to prevent cardiovascular diseases. Although the results of long-term, randomized, placebo-controlled trials for determining the cardiovascular effects of mitiglinide on clinical outcomes are awaited, this review is aimed at summarizing substantial insights into this topic.  相似文献   

14.
Recent animal studies have demonstrated evidence of the involvement of insulin and insulin-like growth factor (IGF)-I signalling in the control of ageing and longevity. Disruption of insulin/IGF-I signalling pathways significantly extends lifespan in several animal models. Similarities among these signalling pathways in animals and humans raise the possibility that modifications in the IGF-I signalling system could also extend lifespan in humans. However, in contrast to the findings in animal studies, reduced IGF-I activity in humans is not associated with longevity. In humans, low IGF-I activity is even associated with an increased risk of developing cardiovascular disease and diabetes. High IGF-I activity in humans is associated with an increased risk of developing cancer. In addition, genetic predisposition and lifestyle play a major role in determining age-associated disease. For each individual there is probably a specific optimal 'setpoint' for the insulin/growth hormone/IGF-I axis which co-determines survival.  相似文献   

15.
Type 2 diabetes is often associated with obesity, dyslipidemia and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown to reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance.  相似文献   

16.
Diabet. Med. 29, 1098-1107 (2012) ABSTRACT: Non-alcoholic fatty liver disease is now recognized as the hepatic component of the metabolic syndrome. Non-alcoholic fatty liver disease is a spectrum of fat-associated liver conditions that can result in end-stage liver disease and the need for liver transplantation. Simple steatosis, or fatty liver, occurs early in non-alcoholic fatty liver disease and may progress to non-alcoholic steatohepatitis, fibrosis and cirrhosis with increased risk of hepatocellular carcinoma. Prevalence estimates for non-alcoholic fatty liver disease range from 17 to 33% in the general populations and it has been estimated that non-alcoholic fatty liver disease exists in up to 70% of people with Type?2 diabetes. Non-alcoholic fatty liver disease increases risk of Type?2 diabetes and cardiovascular disease. In people with Type?2 diabetes, non-alcoholic fatty liver disease is the most frequent cause (~80%) of fatty liver diagnosed by ultrasound. As non-alcoholic fatty liver disease is strongly associated with insulin resistance, the presence of non-alcoholic fatty liver disease with diabetes often contributes to poor glycaemic control. Consequently, strategies that decrease liver fat and improve whole-body insulin sensitivity may both contribute to prevention of Type?2 diabetes and to better glycaemic control in people who already have developed diabetes. This review summarizes the Dorothy Hodgkin lecture given by the author at the 2012 Diabetes UK annual scientific conference, proposing that fatty acid fluxes through the liver are crucial for the pathogenesis of non-alcoholic fatty liver disease and for increasing insulin resistance.  相似文献   

17.
18.
An overproduction of VLDL by the liver and a slower clearance of these lipoproteins are usually seen in diabetic patients. There is correlation between insulin resistance and plasma triglyceride concentration. Triglyceride may influence an early step in the insulin action pathway and alternatively, insulin resistance may cause hypertriglyceridemia. Hyperinsulinemia and/or hypertriglyceridemia may play a strong role in the cardiovascular risk of patients with type II diabetes. There is an important need to conduct trials to define therapy that can reduce the risk of cardiovascular complications.  相似文献   

19.
The beneficial effects of physical exercise on the decreased insulin sensitivity caused by detrimental lifestyle were reviewed based on experimental evidences. In epidemiological studies, disease prevention has been considered at three levels: primary (avoiding the occurrence of disease), secondary (early detection and reversal), and tertiary (prevention or delay of complications). The major purpose of physical exercise for primary prevention and treatment of lifestyle-related diseases is to improve insulin sensitivity. It is known that, during physical exercise, glucose uptake by the working muscles rises 7 to 20 times over the basal level, depending on the intensity of the work performed. However, intense exercise provokes the release of insulin-counter regulatory hormones such as glucagons and catecholamines, which ultimately cause a reduction in the insulin action. Continued physical training improves the reduced peripheral tissue sensitivity to insulin in impaired glucose tolerance and Type II diabetes, along with regularization of abnormal lipid metabolism. Furthermore, combination of salt intake restriction and physical training ameliorates hypertension. In practical terms, before diabetic patients undertake any program of physical exercise, various medical examinations are needed to determine whether they have good glycemic control and are without progressive complications. Because the effect of exercise that is manifested in improved insulin sensitivity decreases within 3 days after exercise and is no longer apparent after 1 week, a continued program is needed. For a safety practice, moderate- or low-intensity exercise is preferable. In conclusion, we have found sufficient evidences that support the theory that, combined with other forms of therapy, mild exercise training increases insulin action despite no influence on body mass index or maximal oxygen uptake. Along with evident benefits in health promotion, moderate-intensity exercise might play an important role in facilitating treatment of various diseases.  相似文献   

20.
Type 1 diabetes is an autoimmune disorder characterized by a lack of insulin production by the beta cells of the pancreas. This lack of insulin causes a variety of systemic effects on whole-body metabolism. Poorly managed type 1 diabetes can lead to cardiovascular disease, diabetic neuropathy, and diabetic retinopathy. Increasingly, even well-managed type 1 diabetic patients show damage to peripheral organs related to complications from the disease. The central role of insulin in energy homeostasis also renders it an important signaling factor in the reproductive tract. type 1 diabetes has now been demonstrated to cause defects in sperm and testes. The aim of this review is to present the known effects of insulin's role in the function of the male reproductive tract. These effects might be mediated through hormonal alterations in the hypothalamic pituitary gonadal axis or through the direct interaction of insulin on the testes and sperm cells. Although fertility complications also occur in type 2 diabetic males, this review will focus on the defects specifically linked with the lack of insulin seen in type 1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号