首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用一个F2作图群体(X178×B73),首先构建了一个含有130个SSRs的玉米连锁框架图,然后用119个AFLPs位点增加图谱密度,得到一个全长1659·3cM,标记间平均间距6·66cM的玉米相对饱和连锁图。同时,对SSRs和AFLPs的一些遗传特性进行了分析,探讨了AFLP标记进行共显性分析的一种新方法。分析表明SSRs和AFLPs分子标记具有多态性和可靠性高等特点,是构建高密度分子标记遗传连锁图的有效技术。加密的玉米遗传连锁图谱为比较基因组研究、数量性状位点(quantitativetraitloci,QTLs)克隆、杂种优势机理研究以及标记辅助选择等提供了技术基础。  相似文献   

2.
利用向日葵重组自交系构建遗传图谱   总被引:2,自引:0,他引:2  
张永虎  于海峰  侯建华  李素萍  吕品  于志贤 《遗传》2014,36(10):1036-1042
以向日葵自选系K55为母本、K58为父本杂交组合,通过单粒传得到的187个F5:6代重组自交系群体为作图材料,联合应用SSR和AFLP标记构建遗传连锁图谱。经过78对SSR引物和48对AFLP引物组合选择性扩增,分别得到341和1119条带,共1460条,分别获得多态性条带184条和393条,共577条多态性条带,占所有条带的39.52%。SSR和AFLP标记各有84个和108个多态性标记偏离孟德尔分离比例(P=0.05),共192个偏分离标记。采用JoinMap4.0软件进行连锁分析,构建了1张总长度为2759.4 cM、包含17个连锁群、连锁495个多态性标记的遗传图谱,其中偏分离标记170个,标记间的平均图距为5.57 cM。每个连锁群上分布有5~72个标记,长68.88~250.17 cM。本图谱为向日葵永久性图谱,为向日葵重要性状QTL定位和基因克隆奠定基础。  相似文献   

3.
Sorghum [Sorghum bicolor (L.) Moench] is an important crop in the semi-arid tropics that also receives growing attention in genetic research. A comprehensive reference map of the sorghum genome would be an essential research tool. Here, a combined sorghum linkage map from two recombinant inbred populations was constructed using AFLP, SSR, RFLP and RAPD markers. The map was aligned with other published sorghum maps which are briefly reviewed. The two recombinant inbred populations (RIPs) analyzed in this study consisted of 225 (RIP 1) and 226 (RIP 2) F3:5 lines, developed from the crosses IS 9830 2 E 36-1 (RIP 1) and N 13 2 E 36-1 (RIP 2), respectively. The genetic map of RIP 1 had a total length of 1,265 cM (Haldane), with 187 markers (125 AFLPs, 45 SSRs, 14 RFLPs, 3 RAPDs) distributed over ten linkage groups. The map of RIP 2 spanned 1,410 cM and contained 228 markers (158 AFLPs, 54 SSRs, 16 RFLPs) in 12 linkage groups. The combined map of the two RIPs contained 339 markers (249 AFLPs, 63 SSRs, 24 RFLPs, 3 RAPDs) on 11 linkage groups and had a length of 1,424 cM. It was in good agreement with other sorghum linkage maps, from which it deviated by a few apparent inversions, deletions, and additional distal regions.  相似文献   

4.
An anther-derived doubled haploid (DH) population and an F2 mapping population were developed from an intraspecific hybrid between the eggplant breeding lines 305E40 and 67/3. The former incorporates an introgressed segment from Solanum aethiopicum Gilo Group carrying the gene Rfo-sa1, which confers resistance to Fusarium oxysporum; the latter is a selection from an intraspecific cross involving two conventional eggplant varieties and lacks Rfo-sa1. Initially, 28 AFLP primer combinations (PCs) were applied to a sample of 93 F2 individuals and 93 DH individuals, from which 170 polymorphic AFLP fragments were identified. In the DH population, the segregation of 117 of these AFLPs as well as markers closely linked to Rfo-sa1 was substantially distorted, while in the F2 population, segregation distortion was restricted to just 10 markers, and thus the latter was chosen for map development. A set of 141 F2 individuals was genotyped with 73 AFLP PCs (generating 406 informative markers), 32 SSRs, 4 tomato RFLPs, and 3 CAPS markers linked to Rfo-sa1. This resulted in the assignment of 348 markers to 12 major linkage groups. The framework map covered 718.7?cM, comprising 238 markers (212 AFLPs, 22 SSRs, 1 RFLP, and the Rfo-sa1 CAPS). Marker order and inter-marker distances in this eggplant map were largely consistent with those reported in a recently published SSR-based map. From an eggplant breeding perspective, DH populations produced by anther culture appear to be subject to massive segregation distortion and thus may not be very efficient in capturing the full range of genetic variation present in the parental lines.  相似文献   

5.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

6.
An integrated DArT-SSR linkage map of durum wheat   总被引:2,自引:0,他引:2  
Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.  相似文献   

7.
Pearl millet is an important component of food security in the semi-arid tropics and is assuming greater importance in the context of changing climate and increasing demand for highly nutritious food and feed. Molecular tools have been developed and applied for pearl millet on a limited scale. However, the existing tool kit needs to be strengthened further for its routine use in applied breeding programs. Here, we report enrichment of the pearl millet molecular linkage map by exploiting low-cost and high-throughput Diversity Arrays Technology (DArT) markers. Genomic representation from 95 diverse genotypes was used to develop a DArT array with circa 7,000 clones following PstI/BanII complexity reduction. This array was used to genotype a set of 24 diverse pearl millet inbreds and 574 polymorphic DArT markers were identified. The genetic relationships among the inbred lines as revealed by DArT genotyping were in complete agreement with the available pedigree data. Further, a mapping population of 140 F7 Recombinant Inbred Lines (RILs) from cross H 77/833-2 × PRLT 2/89-33 was genotyped and an improved linkage map was constructed by integrating DArT and SSR marker data. This map contains 321 loci (258 DArTs and 63 SSRs) and spans 1148 cM with an average adjacent-marker interval length of 3.7 cM. The length of individual linkage groups (LGs) ranged from 78 cM (LG 3) to 370 cM (LG 2). This better-saturated map provides improved genome coverage and will be useful for genetic analyses of important quantitative traits. This DArT platform will also permit cost-effective background selection in marker-assisted backcrossing programs as well as facilitate comparative genomics and genome organization studies once DNA sequences of polymorphic DArT clones are available.  相似文献   

8.
A phenotypically polymorphic barley (Hordeum vulgare L.) mapping population was developed using morphological marker stocks as parents. Ninety-four doubled-haploid lines were derived for genetic mapping from an F1 using the Hordeum bulbosum system. A linkage map was constructed using 12 morphological markers, 87 restriction fragment length polymorphism (RFLP), five random amplified polymorphic DNA (RAPD), one sequence-tagged site (STS), one intron fragment length polymorphism (IFLP), 33 simple sequence repeat (SSR), and 586 amplified fragment length polymorphism (AFLP) markers. The genetic map spanned 1,387 cM with an average density of one marker every 1.9 cM. AFLP markers tended to cluster on centromeric regions and were more abundant on chromosome 1 (7H). RAPD markers showed a high level of segregation distortion, 54% compared with the 26% observed for AFLP markers, 27% for SSR markers, and 18% for RFLP markers. Three major regions of segregation distortion, based on RFLP and morphological markers, were located on chromosomes 2 (2H), 3 (3H), and 7 (5H). Segregation distortion may indicate that preferential gametic selection occurred during the development of the doubled-haploid lines. This may be due to the extreme phenotypes determined by alleles at morphological trait loci of the dominant and recessive parental stocks. Several molecular markers were found to be closely linked to morphological loci. The linkage map reported herein will be useful in integrating data on quantitative traits with morphological variants and should aid in map-based cloning of genes controlling morphological traits. Received: 23 August 2000 / Accepted: 15 December 2000  相似文献   

9.
This study presents the first genetic linkage map for the European flat oyster Ostrea edulis . Two hundred and forty-six AFLP and 20 microsatellite markers were genotyped in a three-generation pedigree comprising two grandparents, two parents and 92 progeny. Chi-square goodness-of-fit tests revealed high segregation distortion, which was significant for 32.8% of markers. Sixteen microsatellites and 235 AFLPs (170 type 1:1 AFLPs and 65 type 3:1 AFLPs) were used to build sex-specific linkage maps using crimap software. The first parental map (P1) consisted of 104 markers grouped in nine linkage groups, and spanned 471.2 cM with an average spacing of 4.86 cM. The second parental map (P2) consisted of 117 markers grouped in 10 linkage groups (which equals the haploid chromosome number), and covered 450.0 cM with an average spacing of 4.21 cM. The estimated coverage of the genome was 82.4% for the P1 map and 84.2% for the P2 map. Eight linkage groups that were probably homologous between the two parents contained the same microsatellites and 3:1 AFLPs (segregating through both parents). Distorted markers were not randomly distributed across the genome and tended to cluster in a few linkage groups. Sex-specific differences in recombination rates were evident. This first-generation genetic linkage map for O. edulis represents a major step towards the mapping of QTL such as resistance to bonamiasis, a parasitosis that has drastically decreased populations of flat oysters since the 1960s.  相似文献   

10.
Diversity arrays technology (DArT) and simple sequence repeat (SSR) markers were applied to investigate population structure, extent of linkage disequilibrium and genetic diversity (kinship) on a genome-wide level in European barley (Hordeum vulgare L.) cultivars. A set of 183 varieties could be clearly distinguished into spring and winter types and was classified into five subgroups based on 253 DArT or 22 SSR markers. Despite the fact, that the same number of groups was revealed by both marker types, it could be shown that this grouping was more distinct for the SSRs than the DArTs, when assigned to a Q-matrix by STRUCTURE. This was supported by the findings from principal coordinate analysis, where the SSRs showed a better resolution according to seasonal habit and row number than the DArTs. A considerable influence on the rate of significant associations with malting and kernel quality parameters was revealed by different marker types in this genome-wide association study using general and mixed linear models considering population structure. Fewer spurious associations were observed when population structure was based on SSR rather than on DArT markers. We therefore conclude that it is advisable to use independent marker datasets for calculating population structure and for performing the association analysis.  相似文献   

11.
A composite genetic melon map was generated based on two recombinant inbred line (RI) populations. By analyzing the segregation of 346 AFLPs, 113 IMAs and phenotypic characters on a RI population of 163 individuals derived from the cross Védrantais x PI 161375, a first map was constructed. About 20% of the molecular markers were skewed, and the residual heterozygosity was estimated at 4.43% which was not significantly different from the theoretical value of 4.2%. The genome distribution of molecular markers among the 12 linkage groups was not different from a random distribution with the exception of linkage group XII which was found significantly less populated. The genome distributions of IMAs and AFLPs were complementary. AFLPs were found mainly in the middle of each linkage group and sometimes clustered, whereas IMAs were found mainly at the end. A total of 318 molecular markers, mainly AFLP and IMA markers, were mapped on 63 RIs of the second population, Védrantais x PI 414723. Comparison of the maps enables one to conclude that AFLPs and IMAs of like molecular size, amplified with the same primer combination, correspond to the same genetic locus. Both maps were joined through 116 common markers comprising 106 comigrating AFLPs/IMAs, plus five SSRs and five phenotypic markers. The integrated melon map contained 668 loci issuing from the segregation of 1,093 molecular markers in the two RI populations. The composite map spanned 1,654 cM on 12 linkage groups which is the haploid number of chromosomes in melon. Thirty two known-function probes, i.e. known-function genes (9) and morphological traits (23), were included in this map. In addition, the composite map was anchored to previously published maps through SSRs, RFLPs and phenotypic characters.  相似文献   

12.
Lentil (Lens culinaris ssp. culinaris), is a self-pollinating diploid (2n?=?2x?=?14), cool-season legume crop and is consumed worldwide as a rich source of protein (~24.0%), largely in vegetarian diets. Here we report development of a genetic linkage map of Lens using 114 F2 plants derived from the intersubspecific cross between L 830 and ILWL 77. RAPD (random amplified polymorphic DNA) primers revealed more polymorphism than ISSR (intersimple sequence repeat) and SSR (simple sequence repeat) markers. The highest proportion (30.72%) of segregation distortion was observed in RAPD markers. Of the 235 markers (34 SSR, 9 ISSR and 192 RAPD) used in the mapping study, 199 (28 SSRs, 9 ISSRs and 162 RAPDs) were mapped into 11 linkage groups (LGs), varying between 17.3 and 433.8 cM and covering 3843.4 cM, with an average marker spacing of 19.3 cM. Linkage analysis revealed nine major groups with 15 or more markers each and two small LGs with two markers each, and 36 unlinked markers. The study reported assigning of 11 new SSRs on the linkage map. Of the 66 markers with aberrant segregation, 14 were unlinked and the remaining 52 were mapped. ISSR and RAPD markers were found to be useful in map construction and saturation. The current map represents maximum coverage of lentil genome and could be used for identification of QTL regions linked to agronomic traits, and for marker-assisted selection in lentil.  相似文献   

13.
L. Cheng  L. Liu  X. Yu  D. Wang  J. Tong 《Animal genetics》2010,41(2):191-198
Common carp (Cyprinus carpio) is an important fish for aquaculture, but genomics of this species is still in its infancy. In this study, a linkage map of common carp based on Amplified Fragment Length Polymorphism (AFLP) and microsatellite (SSR) markers has been generated using gynogenetic haploids. Of 926 markers genotyped, 151 (149 AFLPs, two SSRs) were distorted and eliminated from the linkage analyses. A total of 699 AFLP and 20 microsatellite (SSR) markers were assigned to the map, which comprised 64 linkage groups and covered 5506.9 cM Kosambi, with an average interval distance of 7.66 cM Kosambi. The normality tests on interval map distances showed a non‐normal marker distribution. Visual inspection of the map distance distribution histogram showed a cluster of interval map distances on the left side of the chart, which suggested the occurrence of AFLP marker clusters. On the other hand, the lack of an obvious cluster on the right side showed that there were a few big gaps which need more markers to bridge. The correlation analysis showed a highly significant relatedness between the length of linkage group and the number of markers, indicating that the AFLP markers in this map were randomly distributed among different linkage groups. This study is helpful for research into the common carp genome and for further studies of genetics and marker‐assisted breeding in this species.  相似文献   

14.
Application of association mapping to plant breeding populations has the potential to revolutionize plant genetics. The main objectives of this study were to (i) investigate the extent and genomic distribution of linkage disequilibrium (LD) between pairs of amplified fragment length polymorphism (AFLP) markers, (ii) compare these results with those obtained with simple sequence repeat (SSR) markers, and (iii) compare the usefulness of AFLP and SSR markers for genomewide association mapping in plant breeding populations. We examined LD in a cross-section of 72 European elite inbred lines genotyped with 452 AFLP and 93 SSR markers. LD was significant (p < 0.05) for about 15% of the AFLP marker pairs and for about 49% of the SSR marker pairs in each of the two germplasm groups, flint and dent. In both germplasm groups the ratio of linked to unlinked loci pairs in LD was higher for AFLPs than for SSRs. The observation of LD due to linkage for both marker types suggested that genome-wide association mapping should be possible using either AFLPs or SSRs. The results of our study indicated that SSRs should be favored over AFLPs but the opposite applies to populations with a long history of recombination.  相似文献   

15.
A genetic linkage map of apricot ( Prunus armeniaca L.) was constructed using AFLP and SSR markers. The map is based on an F(2) population (76 individuals) derived from self-pollination of an F(1) individual ('Lito') originated from a cross between 'Stark Early Orange' and 'Tyrinthos'. This family, designated as 'Lito' x 'Lito', segregated for two important agronomical traits: plum pox virus resistance (PPV) and self-incompatibility. A total of 211 markers (180 AFLPs, 29 SSRs and two agronomic traits) were assigned to 11 linkage groups covering 602 cM of the apricot genome. The average distance (cM/marker) between adjacent markers is 3.84 cM. The PPV resistance trait was mapped on linkage group G1 and the self-incompatibility trait was mapped on linkage group G6. Twenty two loci held in common with other Prunus maps allowed us to compare and establish homologies among the respective linkage groups.  相似文献   

16.
DArT and SSR markers were used to saturate and improve a previous genetic map of RILs derived from the cross Chuan35050 × Shannong483. The new map comprised 719 loci, 561 of which were located on specific chromosomes, giving a total map length of 4008.4 cM; the rest 158 loci were mapped to the most likely intervals. The average chromosome length was 190.9 cM and the marker density was 7.15 cM per marker interval. Among the 719 loci, the majority of marker loci were DArTs (361); the rest included 170 SSRs, 100 EST-SSRs, and 88 other molecular and biochemical loci. QTL mapping for fatty acid content in wheat grain was conducted in this study. Forty QTLs were detected in different environments, with single QTL explaining 3.6-58.1% of the phenotypic variations. These QTLs were distributed on 16 chromosomes. Twenty-two QTLs showed positive additive effects, with Chuan35050 increasing the QTL effects, whereas 18 QTLs were negative with increasing effects from Shannong483. Six sets of co-located QTLs for different traits occurred on chromosomes 1B, 1D, 2D, 5D, and 6B.  相似文献   

17.
Black poplar (Populus nigra L.) is a tree of ecological and economic interest. A better knowledge of P. nigra genome is needed for an effective protection and use of its genetic resources. The main objective of this study is the construction of a highly informative genetic map of P. nigra species including genes of adaptive and economic interest. Two genotypes originated from contrasted natural Italian populations were crossed to generate a F1 mapping pedigree of 165 individuals. Amplification fragment length polymorphism (AFLP), simple sequence repeat (SSR), and single nucleotide polymorphism (SNP) markers were used to genotype 92 F1 individuals, and the pseudo-test-cross strategy was applied for linkage analysis. The female parent map included 368 markers (274 AFLPs, 91 SSRs, and 3 SNPs) and spanned 2,104 cM with 20 linkage groups, and the male parent map, including 317 markers (205 AFLPs, 106 SSRs, 5 SNPs, and sex trait), spanned 2,453 cM with 23 main linkage groups. The sex, as morphological trait, was mapped on the linkage group XIX of the male parent map. The generated maps are among the most informative in SSRs when compared to the Populus maps published so far and allow a complete alignment with the 19 haploid chromosomes of Populus sequence genome. These genetic maps provide informative tools for a better understanding of P. nigra genome structure and genetic improvement of this ecologically and economically important European tree species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
To map the QTLsof Fusarium moniliforme ear rot resistance inZea mays L., a total of 230 F2 individuals, derived from a single cross between inbred maize lines R15 (resistant) and Ye478 (susceptible), were genotyped for genetic map construction using simple sequence repeat (SSR) markers and amplified fragment length polymorphism (AFLP) markers. We used 778 pairs of SSR primers and 63 combinations of AFLP primers to detect the polymorphisms between parents, R15 and Ye478. From the polymorphic 30 AFLP primer combinations and 159 SSR primers, we scored 260 loci in the F2 population, among which 8 SSR and 13 AFLP loci could not be assigned to any of the linkage groups. An integrated molecular genetic linkage map was constructed by the remaining 151 SSR and 88 AFLP markers, which distributed throughout the 10 linkage groups of maize and spanned the genome of about 3463.5 cM with an average of 14.5 cM between two markers. On 4 chromosomes, we detected 5 putative segregation distortion regions (SDRs), including 2 new ones (SDR2 and SDR7). The other 3 SDRs were located near the regions where gametophyte genes were mapped, indicating that segregation distortion could be partially caused by gametophytic factors.  相似文献   

19.
Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin   总被引:24,自引:0,他引:24  
Yu Z  Guo X 《The Biological bulletin》2003,204(3):327-338
Amplified fragment length polymorphisms (AFLPs), along with some microsatellite and Type I markers, were used for linkage analysis in Crassostrea virginica Gmelin, the eastern oyster. Seventeen AFLP primer combinations were selected for linkage analysis with two parents and their 81 progeny. The 17 primer combinations produced 396 polymorphic markers, and 282 of them were segregating in the two parents. Chi-square analysis indicated that 259 (91.8%) markers segregated in Mendelian ratio, while the other 23 (8.2%) showed significant (P < 0.05) segregation distortion, primarily for homozygote deficiency and probably due to deleterious recessive genes. Moderately dense linkage maps were constructed using 158 and 133 segregating markers (including a few microsatellite and Type I markers) from male and female parents, respectively. The male framework map consisted of 114 markers in 12 linkage groups, covering 647 cM. The female map had 84 markers in 12 linkage groups with a length of 904 cM. The estimated genome length was 858 cM for the male map and 1296 cM for the female map. The observed genome coverage was 84% for the male and female map when all linked markers were considered. Genetic maps observed in this study are longer than the cytogenetic map, possibly because of low marker density.  相似文献   

20.
Xie W  Zhang X  Cai H  Huang L  Peng Y  Ma X 《Génome》2011,54(3):212-221
Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season forage grasses commonly grown throughout the temperate regions of the world. The objective of this work was to construct a diploid (2n = 2x = 14) orchardgrass genetic linkage map useful as a framework for basic genetic studies and plant breeding. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers were used for map construction. The linkage relationships among 164 SSRs and 108 SRAPs, assayed in a pseudo-testcross F1 segregating population generated from a cross between two diploid parents, were used to construct male (01996) and female (YA02-103) parental genetic maps. The paternal genetic map contains 90 markers (57 SSRs and 33 SRAPs) over 9 linkage groups (LGs), and the maternal genetic map is composed of 87 markers (54 SSRs and 33 SRAPs) assembled over 10 LGs. The total map distance of the male map is 866.7 centimorgans (cM), representing 81% genome coverage, whereas the female map spans 772.0 cM, representing 75% coverage. The mean map distance between markers is 9.6 cM in the male map and 8.9 cM in the female map. About 14% of the markers remained unassigned. The level of segregation distortion observed in this cross was 15%. Homology between the two maps was established between five LGs of the male map and five LGs of the female map using 10 bridging markers. The information presented in this study establishes a foundation for extending genetic mapping in this species, serves as a framework for mapping quantitative trait loci (QTLs), and provides basic information for future molecular breeding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号