首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.  相似文献   

2.
The nucleoplasmic reticulum (NR), a nuclear membrane network implicated in signaling and transport, is formed by the biosynthetic and membrane curvature-inducing properties of the rate-limiting enzyme in phosphatidylcholine synthesis, CTP:phosphocholine cytidylyltransferase (CCT) alpha. The NR is formed by invagination of the nuclear envelope and has an underlying lamina that may contribute to membrane tubule formation or stability. In this study we investigated the role of lamins A and B in NR formation in response to expression and activation of endogenous and fluorescent protein-tagged CCTalpha. Similarly to endogenous CCTalpha, CCT-green fluorescent protein (GFP) reversibly translocated to nuclear tubules projecting from the NE in response to oleate, a lipid promoter of CCT membrane binding. Coexpression and RNA interference experiments revealed that both CCTalpha and lamin A and B were necessary for NR proliferation. Expression of CCT-GFP mutants with compromised membrane-binding affinity produced fewer nuclear tubules, indicating that the membrane-binding function of CCTalpha promotes the expansion of the NR. Proliferation of atypical bundles of nuclear membrane tubules by a CCTalpha mutant that constitutively associated with membranes revealed that expansion of the double-bilayer NR requires the coordinated assembly of an underlying lamin scaffold and induction of membrane curvature by CCTalpha.  相似文献   

3.
Membrane phosphatidylcholine homeostasis is maintained in part by a sensing device in the key regulatory enzyme, CTP:phosphocholine cytidylyltransferase (CCT). CCT responds to decreases in membrane phosphatidylcholine content by reversible membrane binding and activation. Two prominent isoforms, CCTα and -β2, have nearly identical catalytic domains and very similar membrane binding amphipathic helical (M) domains but have divergent and structurally disordered N-terminal (N) and C-terminal phosphorylation (P) regions. We found that the binding affinity of purified CCTβ2 for anionic membranes was weaker than CCTα by more than an order of magnitude. Using chimeric CCTs, insertion/deletion mutants, and truncated CCTs, we show that the stronger affinity of CCTα can be attributed in large part to the electrostatic membrane binding function of the polybasic nuclear localization signal (NLS) motif, present in the unstructured N-terminal segment of CCTα but lacking in CCTβ2. The membrane partitioning of CCTβ2 in cells enriched with the lipid activator, oleic acid, was also weaker than that of CCTα and was elevated by incorporation of the NLS motif. Thus, the polybasic NLS can function as a secondary membrane binding motif not only in vitro but in the context of cell membranes. A comparison of phosphorylated, dephosphorylated, and region P-truncated forms showed that the in vitro membrane affinity of CCTβ2 is more sensitive than CCTα to phosphorylation status, which antagonizes membrane binding of both isoforms. These data provide a model wherein the primary membrane binding motif, an amphipathic helical domain, works in collaboration with other intrinsically disordered segments that modulate membrane binding strength. The NLS reinforces, whereas the phosphorylated tail antagonizes the attraction of domain M for anionic membranes.  相似文献   

4.
Synthesis of phosphatidylcholine, the major phospholipid of animal cell membranes, requires the key enzyme cytidylyltransferase (CCTalpha). Cysteine sulfhydryls within CCTalpha are needed for full catalytic activity. Here we show that prostaglandin 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) inactivates CCTalpha by inducing generation of reactive oxidant species and the appearance of a cross-linked CCTalpha dimer in cells. N-Acetyl-l-cysteine reduced oxidative stress, prevented CCTalpha cross-linking, and restored CCT function in 15d-PGJ(2)-treated cells. 15d-PGJ(2) modified critical cysteine residues within CCTalpha as determined by mutagenesis studies and by incorporation of biotin-15d-PGJ(2) into CCTalpha. These effects of 15d-PGJ(2) were associated with CCTalpha accumulation within the nucleus. The data indicate that bioactive prostanoids significantly impair membrane phospholipid production by promoting cysteine cross-bridging within CCTalpha.  相似文献   

5.
CTP:phosphocholine cytidylyltransferase (CCT), a rate-limiting enzyme in phosphatidylcholine synthesis, is regulated by reversible membrane interactions mediated by an amphipathic helical domain (M) that binds selectively to anionic lipids. CCT is a dimer; thus the functional unit has two M domains. To probe the functional contribution of each domain M we prepared a CCT heterodimer composed of one full-length subunit paired with a CCT subunit truncated before domain M that was also catalytically dead. We compared this heterodimer to the full-length homodimer with respect to activation by anionic vesicles, vesicle binding affinities, and promotion of vesicle aggregation. Surprisingly for all three functions the dimer with just one domain M behaved similarly to the dimer with two M domains. Full activation of the wild-type subunit was not impaired by loss of one domain M in its partner. Membrane binding affinities were the same for dimers with one versus two M domains, suggesting that the two M domains of the dimer do not engage a single bilayer simultaneously. Vesicle cross-bridging was also unhindered by loss of one domain M, suggesting that another motif couples with domain M for cross-bridging anionic membranes. Mutagenesis revealed that the positively charged nuclear localization signal sequence constitutes that second motif for membrane cross-bridging. We propose that the two M domains of the CCT dimer engage a single bilayer via an alternating binding mechanism. The tethering function involves the cooperation of domain M and the nuclear localization signal sequence, each engaging separate membranes. Membrane binding of a single M domain is sufficient to fully activate the enzymatic activity of the CCT dimer while sustaining the low affinity, reversible membrane interaction required for regulation of CCT activity.  相似文献   

6.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a proteolytically sensitive enzyme essential for production of phosphatidylcholine, the major phospholipid of animal cell membranes. The molecular signals that govern CCTalpha protein stability are unknown. An NH(2)-terminal PEST sequence within CCTalpha did not serve as a degradation signal for the proteinase, calpain. Calmodulin (CaM) stabilized CCTalpha from calpain proteolysis. Adenoviral gene transfer of CaM in cells protected CCTalpha, whereas CaM small interfering RNA accentuated CCTalpha degradation by calpains. CaM bound CCTalpha as revealed by fluorescence resonance energy transfer and two-hybrid analysis. Mapping and site-directed mutagenesis of CCTalpha uncovered a motif (LQERVDKVK) harboring a vital recognition site, Gln(243), whereby CaM directly binds to the enzyme. Mutagenesis of CCTalpha Gln(243) not only resulted in loss of CaM binding but also led to complete calpain resistance in vitro and in vivo. Thus, calpains and CaM both access CCTalpha using a structurally similar molecular signature that profoundly affects CCTalpha levels. These data suggest that CaM, by antagonizing calpain, serves as a novel binding partner for CCTalpha that stabilizes the enzyme under proinflammatory stress.  相似文献   

7.
8.
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in the synthesis of phosphatidylcholine, the most abundant phospholipid in eukaryotic cell membranes. The CCT-catalyzed transfer of a cytidylyl group from CTP to phosphocholine to form CDP-choline is regulated by a membrane lipid-dependent mechanism imparted by its C-terminal membrane binding domain. We present the first analysis of a crystal structure of a eukaryotic CCT. A deletion construct of rat CCTα spanning residues 1–236 (CCT236) lacks the regulatory domain and as a result displays constitutive activity. The 2.2-Å structure reveals a CCT236 homodimer in complex with the reaction product, CDP-choline. Each chain is composed of a complete catalytic domain with an intimately associated N-terminal extension, which together with the catalytic domain contributes to the dimer interface. Although the CCT236 structure reveals elements involved in binding cytidine that are conserved with other members of the cytidylyltransferase superfamily, it also features nonconserved active site residues, His-168 and Tyr-173, that make key interactions with the β-phosphate of CDP-choline. Mutagenesis and kinetic analyses confirmed their role in phosphocholine binding and catalysis. These results demonstrate structural and mechanistic differences in a broadly conserved protein fold across the cytidylyltransferase family. Comparison of the CCT236 structure with those of other nucleotidyltransferases provides evidence for substrate-induced active site loop movements and a disorder-to-order transition of a loop element in the catalytic mechanism.  相似文献   

9.
CTP:phosphocholine cytidylyltransferase (CCT) is a rate-determining enzyme in the de novo synthesis of phosphatidylcholine (PtdCho). Alveolar type II cells synthesize large quantities of disaturated PtdCho, the surface-active agent of pulmonary surfactant, particularly at late gestation when the lung prepares itself for postnatal air breathing. To clarify the role of CCTalpha in lung surfactant maturation, we overexpressed CCTalpha(1-367) using the surfactant protein-C promoter. Lungs of transgenic mice were analyzed at day 18 of gestation (term = 19 days). Overexpression of CCTalpha(1-367) increased the synthesis and content of PtdCho in fetal type II cells isolated from the transgenic mice. Also, PtdCho content of fetal lung fluid was increased. No changes in surfactant protein content were detected. Interestingly, fetal type II cells of transgenic mice contained more glycogen than control cells. Incorporation studies with [U-(14)C]glucose demonstrated that overexpression of CCTalpha(1-367) in fetal type II cells increased glycogen synthesis without affecting glycogen breakdown. To determine which domain contributes to this glycogen phenotype, two additional transgenes were created overexpressing either CCTalpha(1-239) or CCTalpha(239-367). Glycogen synthesis and content were increased in fetal type II cells expressing CCTalpha(239-367) but not CCTalpha(1-239)(.) We conclude that overexpression of CCTalpha increases surfactant PtdCho synthesis without affecting surfactant protein levels but that it disrupts glycogen metabolism in differentiating type II cells via its regulatory domain.  相似文献   

10.
We investigated the effects of tumor necrosis factor alpha (TNFalpha), a key cytokine involved in inflammatory lung disease, on phosphatidylcholine (PtdCho) biosynthesis in a murine alveolar type II epithelial cell line (MLE-12). TNFalpha significantly inhibited [(3)H]choline incorporation into PtdCho after 24 h of exposure. TNFalpha reduced the activity of CTP:phosphocholine cytidylyltransferase (CCT), the rate-regulatory enzyme within the CDP-choline pathway, by 40% compared with control, but it did not alter activities of choline kinase or cholinephosphotransferase. Immunoblotting revealed that TNFalpha inhibition of CCT activity was associated with a uniform decrease in the mass of CCTalpha in total cell lysates, cytosolic, microsomal, and nuclear subfractions of MLE cells. Northern blotting revealed no effects of the cytokine on steady-state levels of CCTalpha mRNA, and CCTbeta mRNA was not detected. Incorporation of [(35)S]methionine into immunoprecipitable CCTalpha protein in pulse and pulse-chase studies revealed that TNFalpha did not alter de novo synthesis of enzyme, but it substantially accelerated turnover of CCTalpha. Addition of N-acetyl-Leu-Leu-Nle-CHO (ALLN), the calpain I inhibitor, or lactacystin, the 20 S proteasome inhibitor, blocked the inhibition of PtdCho biosynthesis mediated by TNFalpha. TNFalpha-induced degradation of CCTalpha protein was partially blocked by ALLN or lactacystin. CCT was ubiquitinated, and ubiquitination increased after TNFalpha exposure. m-Calpain degraded both purified CCT and CCT in cellular extracts. Thus, TNFalpha inhibits PtdCho synthesis by modulating CCT protein stability via the ubiquitin-proteasome and calpain-mediated proteolytic pathways.  相似文献   

11.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a rate-regulatory enzyme required for phosphatidylcholine (PtdCho) synthesis. CCTalpha is also a phosphoenzyme, but the physiologic role of kinases on enzyme function remains unclear. We report high-level expression of two major isoforms of the c-Jun N-terminal kinase family (JNK1 and JNK2) in murine lung epithelia. Further, JNK1 and JNK2 phosphorylated purified CCTalpha in vitro, and this was associated with a dose-dependent decrease (approximately 40%) in CCT activity. To evaluate JNK in vivo, lung epithelial cells were infected with a replication defective adenoviral vector encoding murine JNK2 (Adv-JNK2) or an empty vector. Adv-JNK2 infection, unlike the empty vector, markedly increased JNK2 expression concomitant with increased incorporation of [32P]orthophosphate into endogenous CCTalpha. Although Adv-JNK2 infection only modestly reduced CCT activity, it reduced PtdCho synthesis by approximately 30% in cells. These observations suggest a role for JNK kinases as negative regulators of phospholipid synthesis in murine lung epithelia.  相似文献   

12.
The CTP:phosphocholine cytidylyltransferase (CCT) governs the rate of phosphatidylcholine (PtdCho) biosynthesis, and its activity is governed by interaction with membrane lipids. The carboxy-terminus was dissected to delineate the minimum sequences required for lipid responsiveness. The helical domain is recognized as a site of lipid interaction, and all three tandem alpha-helical repeats from residues 257 through 290 were found to be required for regulation of enzymatic activity by this domain. Truncation of the carboxy-terminus to remove one or more of the alpha-helical repeats yielded catalytically compromised proteins that were not responsive to lipids but retained sufficient activity to accelerate PtdCho biosynthesis when overexpressed in vivo. The role of the helical region in lipid-activation was tested further by excising residues 257 through 309 to yield a protein that retained a 57-residue carboxy terminal domain fused to the catalytic core. This construct tested the hypothesis that the helical region inhibits activity in the absence of lipid rather than activates the enzyme in the presence of lipid. This hypothesis predicts constitutive activity for CCTalpha[Delta257-309]; however, this protein was tightly regulated by lipid with activities comparable to the full-length CCTalpha, in both the absence and presence of lipid. Activation of CCTalpha[Delta257-309] was dependent exclusively on anionic lipids, whereas full-length CCTalpha responded to either anionic or neutral lipids. Phosphatidic acid delivered in Triton X-100 micelles was the preferred activator of the second lipid-activation domain. These data demonstrate that CCTalpha can be regulated by lipids by two independent domains: (i) the three amphipathic alpha-helical repeats that interact with both neutral and anionic lipid mixtures and (ii) the last 57 residues that interact with anionic lipids. The results show that both domains are inhibitory in the absence of lipid and activating in the presence of lipid. Removal of both domains results in a nonresponsive, dysregulated enzyme with reduced activity. The data also demonstrate for the first time that the 57-residue carboxy-terminal domain in CCTalpha participates in lipid-mediated regulation and is sufficient for maximum activation of enzyme activity.  相似文献   

13.
In addition to suppressing cholesterol synthesis and uptake, oxysterols also activate glycerophospholipid and SM (sphingomyelin) synthesis, possibly to buffer cells from excess sterol accumulation. In the present study, we investigated the effects of oxysterols on the CDP-choline pathway for PtdCho (phosphatidylcholine) synthesis using wild-type and sterol-resistant CHO (Chinese-hamster ovary) cells expressing a mutant of SCAP [SREBP (sterol-regulatory-element-binding protein) cleavage-activating protein] (CHO-SCAP D443N). [(3)H]Choline-labelling experiments showed that 25OH (25-hydroxycholesterol), 22OH (22-hydroxycholesterol) and 27OH (27-hydroxycholesterol) increased PtdCho synthesis in CHO cells as a result of CCTalpha (CTP:phosphocholine cytidylyltransferase alpha) translocation and activation at the NE (nuclear envelope). These oxysterols also activate PtdCho synthesis in J774 macrophages. in vitro, CCTalpha activity was stimulated 2- to 2.5-fold by liposomes containing 5 mol% 25OH, 22OH or 27OH. Inclusion of up to 5 mol% cholesterol did not further activate CCTalpha. 25OH activated CCTalpha in CHO-SCAP D443N cells leading to a transient increase in PtdCho synthesis and accumulation of CDP-choline. CCTalpha translocation to the NE and intranuclear tubules in CHO-SCAP D443N cells was complete after 1 h exposure to 25OH compared with only partial translocation by 4-6 h in CHO-Mock cells. These enhanced responses in CHO-D443N cells were sterol-dependent since depletion with cyclodextrin or lovastatin resulted in reduced sensitivity to 25OH. However, the lack of effect of cholesterol on in vitro CCT activity indicates an indirect relationship or involvement of other sterols or oxysterol. We conclude that translocation and activation of CCTalpha at nuclear membranes by side-chain hydroxylated sterols are regulated by the cholesterol status of the cell.  相似文献   

14.
Phosphatidylcholine (PtdCho) is a major membrane phospholipid, and its loss is sufficient in itself to induce cell death. PtdCho homeostasis is regulated by the balance between hydrolysis and synthesis. PtdCho is hydrolyzed by phospholipase A2 (PLA2), PtdChospecific phospholipase C (PtdCho-PLC), and phospholipase D (PLD). PtdCho synthesis is rate-limited by CTP:phosphocholine cytidylyltransferase (CCT), which makes CDP-choline. The final step of PtdCho synthesis is catalyzed by CDP-choline:1,2-diacylglycerol cholinephosphotransferase. PtdCho synthesis in the brain is predominantly through the CDP-choline pathway. Transient middle cerebral artery occlusion (tMCAO) significantly increased PLA2 activity, secretory PLA2 (sPLA2)-IIA mRNA and protein levels, PtdCho-PLC activity, and PLD2 protein expression following reperfusion. CDP-choline treatment significantly attenuated PLA2 activity, sPLA2-IIA mRNA and protein levels, and PtdCho-PLC activity, but did not affect PLD2 protein expression. tMCAO also resulted in loss of CCT activity and CCTalpha protein, which were partially restored by CDP-choline. No changes were observed in cytosolic PLA2 or calcium-independent PLA2 tMCAO. protein levels after Up-regulation of PLA2, PtdCho-PLC, and PLD and regulation of CCT collectively down-resulted in loss of PtdCho, which was significantly restored by CDP-choline treatment. CDP-choline treatment significantly attenuated the infarction volume by 55 +/- 5% after 1 h of tMCAO and 1 day of reperfusion. Taken together, these results suggest that CDP-choline significantly restores Ptd-Cho levels by differentially affecting sPLA2-IIA, PtdCho-PLC, and CCTalpha after transient focal cerebral ischemia. A hypothetical scheme is proposed integrating results from this study and from other reports in the literature.  相似文献   

15.
16.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.  相似文献   

17.
CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme that controls phosphatidylcholine synthesis, is regulated by reversible interactions with membranes containing anionic lipids. Previous work demonstrated that CCT is a homodimer. In this work we show that the structure of the dimer interface is altered upon encountering membranes that activate CCT. Chemical cross-linking reactions were established which captured intradimeric interactions but not random CCT dimer collisions. The efficiency of capturing covalent cross-links with four different reagents was diminished markedly upon presentation of activating anionic lipid vesicles but not zwitterionic vesicles. Experiments were conducted to show that the anionic vesicles did not interfere with the chemistry of the cross-linking reactions and did not sequester available cysteine sites on CCT for reaction with the cysteine-directed cross-linking reagent. Thus, the loss of cross-linking efficiency suggested that contact sites at the dimer interface had increased distance or reduced flexibility upon binding of CCT to membranes. The regions of the enzyme involved in dimerization were mapped using three approaches: 1) limited proteolysis followed by cross-linking of fragments, 2) yeast two-hybrid analysis of interactions between select domains, and 3) disulfide bonding potential of CCTs with individual cysteine to serine substitutions for the seven native cysteines. We found that the N-terminal domain (amino acids 1-72) is an important participant in forming the dimer interface, in addition to the catalytic domain (amino acids 73-236). We mapped the intersubunit disulfide bond to the cystine 37 pair in domain N and showed that this disulfide is sensitive to anionic vesicles, implicating this specific region in the membrane-sensitive dimer interface.  相似文献   

18.
CTP:phosphocholine cytidylyltransferase (CCT) is an amphitropic protein regulating phosphatidylcholine synthesis. Lipid-induced folding of its amphipathic helical (AH) membrane-binding domain activates the enzyme. In this study we examined the membrane deforming property of CCT in vitro by monitoring conversion of vesicles to tubules, using transmission electron microscopy. Vesicle tubulation was proportional to the membrane density of CCT and proceeded either as growth from a pre-formed surface bud, or as a global transformation of roughly spherical vesicles into progressively thinner tubules. The tubulation pathway depended on the lipid compositional heterogeneity of the vesicles, with heterogeneous mixtures supporting the bud-extension pathway. Co-existence of vesicles alongside thick and thin tubules suggested that CCT can discriminate between flat membrane surfaces and those with emerging curvature, binding preferentially to the latter. Thin tubules had a limiting diameter of ~12nm, likely representing bilayer cylinders with a very high density of 1 CCT/50 lipids. The AH segment was necessary and sufficient for tubulation. AH regions from diverse CCT sources, including C. elegans, had tubulation activity that correlated with α-helical length. The AH motifs in CCT and the Parkinson's-related protein, α-synuclein, have similar features, however the CCT AH was more effective in its membrane remodeling function. That CCT can deform vesicles of physiologically relevant composition suggests that CCT binding to membranes may initiate deformations required for organelle morphogenesis and at the same time stimulate synthesis of the PC required for the development of these regions.  相似文献   

19.
Taneva S  Johnson JE  Cornell RB 《Biochemistry》2003,42(40):11768-11776
CTP:phosphocholine cytidylyltranferase (CCT) regulates phosphatidylcholine (PC) biosynthesis. Its activity is controlled by reversible interactions with membrane lipids, mediated by an internal segment referred to as domain M. Although domain M peptides adopt an amphipathic alpha-helical structure when membrane bound, the structure of this domain in the context of the whole enzyme in the lipid-free and lipid-bound state is unknown. Here we derive lipid-induced secondary structural changes in CCTalpha using circular dichroism and three deconvolution programs. The analysis of two fragments, CCT236 (CCT1-236, housing the catalytic domain) and a synthetic domain M peptide (CCT237-293) aided the assignment of structural change to specific domains. To carry out this study, we developed a micellar lipid activating system that would avoid generation of CCT-induced lipid vesicle aggregates that interfere with the CD analysis. Lysophosphatidylcholine/phosphatidylglycerol (LPC/PG) mixed micelles supported full activation of CCT and caused an increase in the alpha-helix content of full-length CCT from 25 to 41%, at the expense of all other conformations. LPC/PG also induced an increase in alpha-helix content of the domain M peptide from 7 to 85% at the expense of all other conformers. This lipid system did not significantly affect the secondary structure of CCT236, nor did it affect the proteolytic fragmentation pattern of this region within full-length CCT, suggesting that the region containing the catalytic domain changes very little upon membrane activation of CCT. Our data suggest that lipids trigger a conformational switch in domain M from a mixed structure to an alpha-helix, thus creating a hydrophobic face for membrane insertion. Our results negate the idea that domain M is entirely helical in both the soluble and membrane-bound forms of CCT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号