首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
Liver microsomal steroid 5-alpha-reduction is catalyzed by a NADPH-dependent enzyme system. The requirement of NADPH-cytochrome P-450 reductase to shuttle reduction equivalents from NADPH to steroid 5-alpha-reductase was investigated using an inhibitory antibody against NADPH-cytochrome P-450 reductase. This antibody preparation inhibited cytochrome c reduction in microsomes from female rat liver with an I50 of 0.75 mg antibody/mg of microsomal protein. Benzphetamine N-demethylation and testosterone 6-beta-hydroxylation, two cytochrome P-450-mediated oxidative reactions, were inhibited by the antibody. On the other hand, testosterone 5-alpha-reductase was not affected by the antibody. These results suggest that NADPH-cytochrome P-450 reductase is not an obligatory component of the liver microsomal steroid 5-alpha-reduction.  相似文献   

2.
The Chronic Administration of Nicotine Induces Cytochrome P450 in Rat Brain   总被引:2,自引:0,他引:2  
Abstract: The objective of these studies was to determine whether chronic administration of nicotine altered the cytochrome P450 (P450) monooxygenase system in rat brain. Male Sprague-Dawley rats received injections of nicotine bitartrate (1.76 mg/kg, s.c, twice daily for 10 days), and total cytochrome P450 content, the activity of N ADPH-cytochrome c reductase, and the activities and relative abundance of P4502B1 and P4502B2 (P4502B1/2) were determined in microsomal fractions from rat brain. The content of P450 increased significantly (p < 0.02) in all brain regions examined from nicotine-injected rats: the largest increase (208% of control) was in frontal cortex and the smallest increase (122% of control) in cerebellum. The activity of NADPH-cytochrome c reductase was unaltered by nicotine administration. Benzyloxyresorufin O-dealkylase (BROD) and pentoxyresorufin O-dealkylase (PROD) activities, mediated by P4502B1/2, increased significantly (p < 0.02) following nicotine administration; the largest increase (213-227% of control) was in frontal cortex. Western blots of microsomal proteins indicated that the increase in enzymatic activity was associated with an increase in content of P4502B1/2 immunoreactive proteins. In contrast to brain, total P450 content, activities of NADPH-cytochrome c reductase, BROD, and PROD, and levels of P4502B1 /2 immunoreactive proteins in liver were unaffected by chronic nicotine administration. Results indicate that chronic nicotine administration regulates the expression of P4502B1/2 in brain and that at the dose schedule used this effect occurs without a demonstrable effect on the hepatic P450 monooxygenase system.  相似文献   

3.
A reconstituted lipid peroxidation system consisting of rat liver microsomal NADPH-cytochrome P450 reductase and cytochrome P450 incorporated into phospholipid vesicles was developed and characterized. Peroxidation of the vesicles required NADPH and ADP-Fe3+, just as in the NADPH-dependent peroxidation of microsomes. The peroxidation of the vesicles was inhibited 30-50% by superoxide dismutase, depending upon their cytochrome P450 content: those with higher cytochrome P450 contents exhibited greater rates of malondialdehyde formation which were less sensitive to inhibition by superoxide dismutase. When cytochrome P450 was incorporated into vesicles, EDTA-Fe3+ was not required for lipid peroxidation, distinguishing this system from the one previously described by Pederson and Aust [Biochem. Biophys. Res. Comm. 48, 789; 1972]. Since at least 50% of the malondialdehyde formation in the vesicular system was not inhibited by superoxide dismutase, alternative means of iron reduction (O2-.-independent) were examined. It was found that rat liver microsomes or a reconstituted mixed function oxidase system consisting of NADPH-cytochrome P450 reductase and cytochrome P450 in dilauroylphosphatidylcholine micelles reduced ADP-Fe3+ under anaerobic conditions.  相似文献   

4.
Approximately 90% of the NADPH- and NADH-dependent O-demethylation of p-nitroanisole (PNA) in the hepatic microsomal fraction from phenobarbital (PB)-treated rabbits and in the pulmonary microsomal fraction from untreated rabbits is catalyzed by the same isozyme of cytochrome P-450. This isozyme of cytochrome P-450 catalyzes less than 60% of this reaction in the hepatic microsomal fraction from untreated rabbits. Antibodies to NADPH-cytochrome P-450 reductase inhibit NADPH-dependent metabolism of p-nitroanisole by about 90% but have no effect on NADH-dependent metabolism. Hepatic NADPH-dependent metabolism of pNA and reduction of cytochrome c are inhibited to the same extent with varying amounts of antibodies to NADPH cytochrome P-450 reductase. The same relationship between inhibition of monooxygenase and reductase activities is observed for the hepatic and pulmonary metabolism of benzphetamine and 7-ethoxycoumarin. In contrast, the relationship between inhibition of the pulmonary NADPH-dependent metabolism of pNA and reductase activity is biphasic; at 75% inhibition of reductase activity, metabolism of pNA is inhibited by less than 25%. For NADH-dependent metabolism of pNA, our results indicate that both electrons are transferred to cytochrome P-450 from cytochrome b5.  相似文献   

5.
The regularities of changes in the functional activity of the microsomal monooxygenase system reconstituted by self-assembly from intact rat liver microsomes solubilized with 4% sodium cholate were studied at variable levels of NADPH-cytochrome P-450 reductase and the 3-methylcholanthrene-induced form of cytochrome P-450. Using antibodies against cytochrome P-448, the role of cytochrome P-448 in the overall reaction of benzopyrene hydroxylation induced in the microsomal membrane by a set of molecular forms of cytochrome P-450 was investigated. The effect of NADPH-cytochrome P-450 reductase and cytochrome P-448 incorporation into reconstituted microsomal membranes on benzpyrene metabolism suggests that in intact microsomal membranes benzopyrene metabolism induced by different forms of cytochrome P-450, with the exception of P-448, is limited by reductase is not the limiting component; however, cytochrome P-448 reveals its maximum activity at the cytochrome to reductase optimal molar ratio of 5:1; above this level, the catalytic activity of cytochrome P-448 is lowered.  相似文献   

6.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

7.
The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing <0.005 mg/kg Se, and I(2) deficiency was produced by sodium perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status.  相似文献   

8.
NADPH-cytochrome P450 reductase, an obligatory component of the cytochrome P450 dependent monooxygenase system, was purified to electrophoretic homogeneity from beef liver microsomes. The purification procedure involved the ion exchange chromatography of the detergent-solubilized microsomes on first and second DEAE-cellulose columns, followed by 2',5'-ADP Sepharose affinity chromatography. Further concentration of the enzyme and removal of Emulgen 913 and 2'-AMP were accomplished on the final hydroxylapatite column. The enzyme was purified 239-fold and the yield was 13.5%. Monomer molecular weight of the enzyme was estimated to be 76000 +/- 3000 (N = 5) by SDS-PAGE. The absolute absorption spectrum of beef reductase showed two peaks at 455 and 378 nm, with a shoulder at 478 nm, characteristics of flavoproteins. The effects of cytochrome c concentration, pH, and ionic strength on enzyme activity were studied. Reduction of cytochrome c with the enzyme followed Michaelis-Menten kinetics, and the apparent K(m) of the purified enzyme was found to be 47.7 microM for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer (pH 7.7). Stability of cytochrome c reductase activity was examined at 25 and 37 degrees C in the presence and absence of 20% glycerol. The presence of glycerol enhanced the stability of cytochrome c reductase activity at both temperatures. Sheep lung microsomal cytochrome P4502B and NADPH-cytochrome P450 reductase were also purified by the already existing methods developed in our laboratory. Both beef liver and sheep lung reductases were found to be effective in supporting benzphetamine and cocaine N-demethylation reactions in the reconstituted systems containing purified sheep lung cytochrome P4502B and synthetic lipid, phosphatidylcholine dilauroyl.  相似文献   

9.
Methanol and ethanol administered to rats as a single oral dose increased aniline hydroxylation by the hepatic microsomal fraction by a maximum of 169 and 66% respectively, whereas aminopyrine demethylation was inhibited by 51 and 61%. The concentration of microsomal cytochrome P-450, and the activities of NADPH-cytochrome c reductase and NADPH-cytochrome P-450 reductase were unchanged. Propan-2-ol, administered as a single oral dose, increased microsomal aniline hydroxylation by 165% and increased aminopyrine demethylation by 83%. The concentration of cytochrome P-450 was unchanged whereas NADPH-cytochrome c reductase and NADPH-cytochrome P-450 reductase were both increased by 38%. Methanol, ethanol and propan-2-ol administration resulted in a decreased type I spectral change but had no effect on the reverse type I spectral change. Methanol administration decreased the type II spectral change whereas ethanol and propan-2-ol had no effect. Cycloheximide blocked the increases in aniline hydroxylation and aminopyrine demethylation but could not completely prevent the decreases in aminopyrine demethylation. The increases in aniline hydroxylation were due to an increase in V, but Km was unchanged. The ability of acetone to enhance and compound SKF 525A to inhibit microsomal aniline hydroxylation was decreased by the administration of all three alcohols. The decrease in the metabolism of aminopyrine may result from a decrease in the binding to the type I site with a consequent failure of aminopyrine to stimulate the reduction of cytochrome P-450. Methanol administration may lead to an increase in aniline hydroxylation because of a failure of aniline to inhibit cytochrome P-450 reduction.  相似文献   

10.
Anthranilamide was slightly hydroxylated by a reconstituted rat liver microsomal monooxygenase system with NADPH, but a large amount of hydrogen peroxide was formed with a consumption of NADPH during the reaction. Superoxide dismutase stimulated the hydroxylation by depressing the hydrogen peroxide formation, in that there was a reverse correlation between the two effects due to the dismutase. In addition, a trace of 3-hydroxyanthranilamide, one of the products, not only stimulated NADPH-dependent hydrogen peroxide formation via NADPH-cytochrome c (P-450) reductase, but also inhibited the reduction of cytochrome P-450 by NADPH in the reconstituted system. These effects of 3-hydroxyanthranilamide were also diminished by superoxide dismutase.  相似文献   

11.
Cocaine N-demethylation by microsomal cytochrome P450s is the principal pathway in cocaine bioactivation and hepatotoxicity. P450 isozymes involved in N-demethylation of cocaine have not been elucidated yet and they differ from species to species. In humans and mice, P4503A contributes to cocaine N-demethylase activity, whereas in rats, both P4503A and P4502B participate. In the present study, contribution of different P450 isozymes to cocaine N-demethylase activity was studied in vitro with fish liver microsomes. The specific cocaine N-demethylase activity was found to be 0.672 +/- 0.22 nmol formaldehyde formed/min/mg protein (mean +/- SD, n = 6). Cocaine N-demethylase exhibited biphasic kinetics, and from the Lineweaver-Burk plot, two K(m) values were calculated as 0.085 and 0.205 mM for the high- and low-affinity enzyme. These results indicate that N-demethylation of cocaine in mullet liver microsomes is catalyzed by at least two cytochrome P450 isozymes. Inhibitory effects of cytochrome P450 isozyme-selective chemical inhibitors, ketoconazole, cimetidine, SKF-525A, and quinidine, on cocaine N-demethylase activity were studied at 50, 100, and 500 micro M concentrations of these inhibitors. At 100 micro M final concentrations, ketoconazole (P4503A inhibitor), SKF-525A (inhibitor of both P4502B and P4503A), and cimetidine (P4503A inhibitor) inhibited N-demethylation activity by 73, 69, and 63%, respectively. Quinidine, P4502D-specific inhibitor, at 100 micro M final concentration, reduced N-demethylation activity down to 64%. Aniline, a model substrate for P4502E1, did not alter N-demethylase activity in the final concentration of 100 micro M. IC(50) values were calculated to be 20 micro M for ketoconazole, 48 micro M for cimetidine (both specific P4503A inhibitors), 164 micro M for quinidine (P4502D inhibitor), and 59 micro M for SKF-525A (inhibitor of both P4503A and P4502B). The contribution of P4502B to cocaine N-demethylase activity in mullet liver microsomes was further explored by the use of purified mullet cytochrome P4502B in the reconstituted system containing purified mullet P450 reductase and lipid. The turnover number was calculated as 4.2 nmol HCOH/(min nmol P450). Overall, these results show that P4503A and P4502B are the major P450s responsible for N-demethylation of cocaine, whereas contribution of P4502D is a minor one, and P4502E1 is not involved in the N-demethylation of cocaine in mullet liver microsomes.  相似文献   

12.
The kinetic parameters of NADPH-dependent cytochrome P450 LM2 (2B4) reduction and substrate oxidation in the monomeric reconstituted system, consisting of purified NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers, and in phenobarbital-induced rabbit liver microsomes were compared. In the absence of benzphetamine, NADPH-dependent reduction of cytochrome P450 LM2 was monophasic in the monomeric reconstituted system and biphasic in the microsomes. The presence of the substrate in the monomeric reconstituted system caused the appearance of the fast phase. In this system substrate-free cytochrome P450 LM2 was entirely low-spin, and the addition of benzphetamine shifted the spin equilibrium to a high state very weakly. No correlation between high-spin content and the proportion of the fast phase of NADPH-dependent LM2 reduction was found in the system. Vmax values for the oxidation of type I substrates (benzphetamine, dimethylaniline, aminopyrine) in the monomeric reconstituted system were higher or the same as in the microsomes, whereas Km values for the substrates and NADPH were lower in the microsomes. Maximal activity of the monomeric reconstituted system was observed at a 1:1 NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio. Measurements of benzphetamine oxidation as a function of NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio at a constant total protein concentration allowed the Kd of the NADPH-cytochrome P450 reductase/cytochrome P450 LM2 complex to be estimated as 6.4 +/- 0.5 microM. Complex formation between the NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers was not detected by recording the difference binding spectra of the reductase monomers with LM2 monomers or by treatment the mixture of the monomers of the proteins with the crosslinking reagent, water-soluble carbodiimide.  相似文献   

13.
Luteoskyrin is a hepatotoxic and hepatocarcinogenic bisdihydroanthraquinone produced by Penicillium islandicum Sopp. By observing the EPR spectra of DMPO-spin adducts and luteoskyrin semiquinone radical, we investigated in vitro whether luteoskyrin is reduced to its semiquinone radical leading to the generation of active oxygen species in redox systems catalyzed by NADPH-dependent cytochrome reductases of the liver. We found (1) the formation of luteoskyrin semiquinone radical in the NADPH-cytochrome P-450 reductase system under anaerobic conditions, (2) the generation of O- in the systems composed of luteoskyrin, NAD(P)H, and either rat liver microsomal NADPH-cytochrome P-450 reductase or submitochondrial particles and (3) dicoumarol showed no effect on the O- generation in the case of submitochondrial particles. From these results we proposed that luteoskyrin liver injuries are induced by the active oxygen species generated in the process of autoxidation of luteoskyrin semiquinone radical which is produced in the one-electron redox systems catalyzed by the liver NAD(P)H-dependent cytochrome reductases.  相似文献   

14.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

15.
Antibody against NADPH-cytochrome c reductase inhibited the NADPH-dependent omega and penultimate hydroxylation of lauric acid by microsomes from kidney cortex and liver of rats, but did not inhibit the NADH-dependent hydroxylation of lauric acid. By contrast, an antibody against cytochrome b5 inhibited both the NADH and the NADPH-dependent hydroxylation of lauric acid by these microsomal preparations. Although the antibody against cytochrome b5 did not inhibit NADPH-oxidation, this lack of inhibition could not be attributed to the presence of an endogenous substrate or an uncoupling inhibitor in the antibody preparation. These findings suggest that NADPH-cytochrome c reductase mediates the NADPH-dependent hydroxylation of lauric acid but not its NADH-dependent hydroxylation, whereas cytochrome b5 plays a role in both the NADPH and the NADH-dependent hydroxylation of the fatty acid.  相似文献   

16.
Human intestinal Caco-2 cells metabolize and detoxify NO via a dioxygen- and NADPH-dependent, cyanide- and CO-sensitive pathway that yields nitrate. Enzymes catalyzing NO dioxygenation fractionate with membranes and are enriched in microsomes. Microsomal NO metabolism shows apparent KM values for NO, O2, and NADPH of 0.3, 9, and 2 microM, respectively, values similar to those determined for intact or digitonin-permeabilized cells. Similar to cellular NO metabolism, microsomal NO metabolism is superoxide-independent and sensitive to heme-enzyme inhibitors including CO, cyanide, imidazoles, quercetin, and allicin-enriched garlic extract. Selective inhibitors of several cytochrome P450s and heme oxygenase fail to inhibit the activity, indicating limited roles for a subset of microsomal heme enzymes in NO metabolism. Diphenyleneiodonium and cytochrome c(III) inhibit NO metabolism, suggesting a role for the NADPH-cytochrome P450 oxidoreductase (CYPOR). Involvement of CYPOR is demonstrated by the specific inhibition of the NO metabolic activity by inhibitory anti-CYPOR IgG. In toto, the results suggest roles for a microsomal CYPOR-coupled and heme-dependent NO dioxygenase in NO metabolism, detoxification, and signal attenuation in mammalian cells.  相似文献   

17.
Glycerol can be oxidized by rat liver microsomes to formaldehyde in a reaction that requires the production of reactive oxygen intermediates. Studies with inhibitors, antibodies, and reconstituted systems with purified cytochrome P4502E1 were carried out to evaluate whether P450 was required for glycerol oxidation. A purified system containing phospholipid, NADPH-cytochrome P450 reductase, P4502E1, and NADPH oxidized glycerol to formaldehyde. Formaldehyde production was dependent on NADPH, reductase, and P450, but not phospholipid. Formaldehyde production was inhibited by substrates and ligands for P4502E1, as well as by anti-pyrazole P4502E1 IgG. The oxidation of glycerol by the reconstituted system was sensitive to catalase, desferrioxamine, and EDTA but not to superoxide dismutase or mannitol, indicating a role for H2O2 plus non-heme iron, but not superoxide or hydroxyl radical in the overall glycerol oxidation pathway. The requirement for reactive oxygen intermediates for glycerol oxidation is in contrast to the oxidation of typical substrates for P450. In microsomes from pyrazole-treated, but not phenobarbital-treated rats, glycerol oxidation was inhibited by anti-pyrazole P450 IgG, anti-hamster ethanol-induced P450 IgG, and monoclonal antibody to ethanol-induced P450, although to a lesser extent than inhibition of dimethylnitrosamine oxidation. Anti-rabbit P4503a IgG did not inhibit glycerol oxidation at concentrations that inhibited oxidation of dimethylnitrosamine. Inhibition of glycerol oxidation by antibodies and by aminotriazole and miconazole was closely associated with inhibition of H2O2 production. These results indicate that P450 is required for glycerol oxidation to formaldehyde; however, glycerol is not a direct substrate for oxidation to formaldehyde by P450 but is a substrate for an oxidant derived from interaction of iron with H2O2 generated by cytochrome P450.  相似文献   

18.
The microsomal flavoprotein NADPH-cytochrome P450 reductase (CPR) contains an N-terminal hydrophobic membrane-binding domain required for reconstitution of hydroxylation activities with cytochrome P450s. In contrast, cytochrome b5 (b5) contains a C-terminal hydrophobic membrane-binding domain required for interaction with P450s. We have constructed, expressed and purified a chimeric flavoprotein (hdb5-CPR) where the C-terminal 45 amino acid residues of b5 have replaced the N-terminal 56 amino acid domain of CPR. This hybrid flavoprotein retains the catalytic properties of the native CPR and is able to reconstitute fatty acid and steroid hydroxylation activities with CYP4A1 and CYP17A. However hdb5-CPR is much less effective than CPR for reconstituting activity with CYP3A4. We conclude that differences on the surface of the P450s reflect unique and specific information essential for the recognition needed to establish reactions of intermolecular electron transfer from the flavoprotein CPR.  相似文献   

19.
Changes in the activity of a NADPH-dependent monooxygenase system of the rat liver are studied under the effect of tetramethylthiuramdisulphide. Under these conditions aniline hydroxylation is shown to be inhibited to a higher extent than amidopyrine demethylation. Besides a decrease in the level of cytochrome P-450, the central component of the microsomal system of hydroxylation, there appears cytochrome P-420--an inactivated form of cytochrome P-450.  相似文献   

20.
Cytochrome P4502E1 (CYP2E1) induction by ethanol contributes to alcoholic liver disease and we found that a mixture of polyunsaturated phosphatidylcholines (PPC), which protects against alcohol-induced liver injury, also decreases CYP2E1. Since dilinoleoylphosphatidylcholine (DLPC) is the major component of PPC, we assessed here whether it is responsible for the protection of PPC by feeding rats for 8 weeks our liquid diet containing ethanol (36% of energy) or isocaloric carbohydrates, with either DLPC (1.5 g/1000 cal), PPC (3 g/1000 cal), or linoleate. CYP2E1 was assessed by Western blots and by two of its enzyme activities: the microsomal ethanol-oxidizing system (MEOS) and p-nitrophenolhydroxylase (PNP). With ethanol, CYP2E1 increased 10-fold, with corresponding rises in PNP and MEOS activities. Compared to linoleate, DLPC significantly decreased cytochrome b(5), total cytochromes P450, CYP2E1 content and its corresponding activities. DLPC decreases ethanol-induced CYP2E1 and should be considered for the prevention of alcoholic liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号