首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new urea biosensor for clinical applications was obtained by immobilization of urease within different latex polymers functionalized by hydroxy, acetate and lactobionate groups. Responses of these biosensors based on pH-ion-selective field effect insulator-semiconductor (IS) systems to urea additions were evaluated by capacitance measurements. UV-visible spectroscopy was used to check the urease activity in various matrixes. A good retention of the catalytic urease activity in the case of the cationic polymers was observed. In addition, rotating disk electrode experiments were carried out to determine the matrix permeability characteristics. Under optimal conditions, i.e. buffer capacity corresponding to 5 mM phosphate buffer, the urea enzyme insulator semiconductor (ENIS) sensors showed a linear response for urea concentrations in the range 10(-1.5) to 10(-4)M. Furthermore, kinetic parameters for the immobilized urease were obtained from Lineweaver-Burk plot. Clearly, a fast response and a good adhesion for the urease-acetate polymer composite films, prepared without using glutaraldehyde as cross-linking agent was observed.  相似文献   

2.
The soybean (Glycine max) urease was immobilized on alginate and chitosan beads and various parameters were optimized and compared. The best immobilization obtained were 77% and 54% for chitosan and alginate, respectively. A 2% chitosan solution (w/v) was used to form beads in 1N KOH. The beads were activated with 1% glutaraldehyde and 0.5 mg protein was immobilized per ml of chitosan gel for optimum results. The activation and coupling time were 6 h and 12 h, respectively. Further, alginate and soluble urease were mixed to form beads and final concentrations of alginate and protein in beads were 3.5% (w/v) and 0.5 mg/5 ml gel. From steady-state kinetics, the optimum temperature for urease was 65 °C (soluble), 75 °C (chitosan) and 80 °C (alginate). The activation energies were found to be 3.68 kcal mol−1, 5.02 kcal mol−1, 6.45 kcal mol−1 for the soluble, chitosan- and alginate-immobilized ureases, respectively. With time-dependent thermal inactivation studies, the immobilized urease showed improved stability at 75 °C and the t1/2 of decay in urease activity was 12 min, 43 min and 58 min for soluble, alginate and chitosan, respectively. The optimum pH of urease was 7, 6.2 and 7.9 for soluble, alginate and chitosan, respectively. A significant change in Km value was noticed for alginate-immobilized urease (5.88 mM), almost twice that of soluble urease (2.70 mM), while chitosan showed little change (3.92 mM). The values of Vmax for alginate-, chitosan-immobilized ureases and soluble urease were 2.82 × 102 μmol NH3 min−1 mg−1 protein, 2.65 × 102 μmol NH3 min−1 mg−1 protein and 2.85 × 102 μmol NH3 min−1 mg−1 protein, respectively. By contrast, reusability studies showed that chitosan–urease beads can be used almost 14 times with only 20% loss in original activity while alginate–urease beads lost 45% of activity after same number of uses. Immobilized urease showed improved stability when stored at 4 °C and t1/2 of urease was found to be 19 days, 80 days and 121 days, respectively for soluble, alginate and chitosan ureases. The immobilized urease was used to estimate the blood urea in clinical samples. The results obtained with the immobilized urease were quite similar to those obtained with the autoanalyzer®. The immobilization studies have a potential role in haemodialysis machines.  相似文献   

3.
Poly(ADP-ribose) is a biopolymer synthesized by poly(ADP-ribose) polymerases. Recent findings suggest the possibility for modulation of cellular functions including cell death and mitosis by poly(ADP-ribose). Derivatization of poly(ADP-ribose) may be useful for investigating the effects of poly(ADP-ribose) on various cellular processes. We prepared poly(etheno ADP-ribose) (poly(epsilonADP-ribose)) by converting the adenine moiety of poly(ADP-ribose) to 1-N(6)-etheno adenine residues. Poly(epsilonADP-ribose) is shown to be highly resistant to digestion by poly(ADP-ribose) glycohydrolase (Parg). On the other hand, poly(epsilonADP-ribose) could be readily digested by phosphodiesterase. Furthermore, poly(epsilonADP-ribose) inhibited Parg activity to hydrolyse ribose-ribose bonds of poly(ADP-ribose). This study suggests the possibility that poly(epsilonADP-ribose) might be a useful tool for studying the poly(ADP-ribose) dynamics and function of Parg. This study also implies that modification of the adenine moiety of poly(ADP-ribose) abrogates the susceptibility to digestion by Parg.  相似文献   

4.
Poly(metalpolycarbodiimides) were obtained from cyanamide or dilithium cyanamide and di-, tri- or tetra-chlorogermanes by dehydrochlorination, transmetallation or exchange GeCl/GeN reactions. The preparation was extended to mesityldichlorostibane. Metal polyhalides develop a high tendency to generate poly(metalcarbodiimide) cryptands in spite of the linear molecular shape of the carbodiimide links. In these oligomeric structures, the reactivity of the metal nitrogen bond towards protic reagents is preserved and allows the confirmation of their structure by chemical investigations.  相似文献   

5.
Three types of DNA: approximately 2700 bp polydeoxyguanylic olydeoxycytidylic acid [poly(dG)-poly(dC)], approximately 2700 bp polydeoxyadenylic polydeoxythymidylic acid [poly(dA)-poly(dT)] and 2686 bp linear plasmid pUC19 were deposited on a mica surface and imaged by atomic force microscopy. Contour length measurements show that the average length of poly(dG)-poly(dC) is approximately 30% shorter than that of poly(dA)-poly(dT) and the plasmid. This led us to suggest that individual poly(dG)-poly(dC) molecules are immobilized on mica under ambient conditions in a form which is likely related to the A-form of DNA in contrast to poly(dA)-poly(dT) and random sequence DNA which are immobilized in a form that is related to the DNA B-form.  相似文献   

6.
Herein the development of an alternative optic-conductive fiber configuration applied for the construction of biosensing platforms. This new approach is based on applying the chemical polymerization of pyrrole onto the surface of polymethyl metacrylate (PMMA) fibers to create a polymer—a conductive surface, onto which an additional photoactive polypyrrole-benzophenone (PpyBz) film is electrochemically generated upon the fiber surface. Irradiation of the benzophenone groups embedded in the Ppy films with UV radiation (350 nm) formed active radicals that allowed the covalent attachment of the desired bioreceptors. Characterization of the amperometric biosensing matrix was accomplished by using a model Urease (Urs) through electrochemical impedance spectroscopy (EIS) and amperometry. Both techniques have shown a low charge transfer resistance (340 kΩ) and a high sensitivity (12.3 μA mM−1 cm−2). Thereafter, the construction of an optical biosensing matrix based on horseradish peroxidase (HRP) production of photons was carried out. The high signal to noise (S/N) ratio (1600) indicated clearly that this approach can serve as a new platform to replace glass optical fibers based on biosensors.  相似文献   

7.
目的:热拉伸会改变纤维的结构和性能,进而影响由纤维编织而成的支架的性能。本文考察了PGLA纤维的拉伸倍数对编织支架在SD大鼠皮下的体内降解行为的影响。方法:制备了基于生物可降解高分子材料聚乙交酯丙交酯(PGLA,GA/LA摩尔比=90/10)的完全生物可降解编织支架,通过测试支架在大鼠体内降解过程中的失重、表面形貌、热性能、径向压缩力等变化情况,考察了纤维的不同的拉伸倍数对支架体内降解过程的影响。结果:用拉伸倍数为5的PGLA纤维编织的支架在植入SD大鼠皮下后降解最慢,重量、吸水率、结晶度、化学成分和径向压缩力的变化最慢,植入体内10天后能够保持完整的支架形态。结论:纤维的拉伸倍数会影响由纤维编织成的支架的热性能和力学性能的变化,本研究结果表明这种新的手工编织的支架具有短暂支撑管腔狭窄的潜在应用,为支架的材料选择和制备方法提供了参考,为在体内起到短暂支撑作用的支架的深入研究提供了实验基础。  相似文献   

8.
The thermal decomposition of model compounds for poly (dialkyl fumarate) was studied by using ab initio and density functional theory (DFT) calculations. To determine the most favorable reaction pathway of thermal decomposition, geometries, structures, and energies were evaluated for reactants, products, and transition states of the proposed pathways at the HF/6-31G(d) and B3LYP/6-31G(d) levels. Three possible paths (I, II and III) and subsequent reaction paths (IV and V) for the model compounds of poly (dialkyl fumarate) decomposition had been postulated. It has been found that the path (I) has the lowest activation energy 193.8 kJ mol−1 at B3LYP/6-31G(d) level and the path (I) is considered as the main path for the thermal decomposition of model compounds for poly (dialkyl fumarate).   相似文献   

9.
In the present study we developed alginate-chitosan-poly(lactic-co-glycolic acid) (PLGA) composite microspheres to elevate protein entrapment efficiency and decrease its burst release. Bovine serum albumin (BSA), which used as the model protein, was entrapped into the alginate microcapsules by a modified emulsification method in an isopropyl alcohol-washed way. The rapid drug releases were sustained by chitosan coating. To obtain the desired release properties, the alginate-chitosan microcapsules were further incorporated in the PLGA to form the composite microspheres. The average diameter of the composite microcapsules was 31+/-9microm and the encapsulation efficiency was 81-87%, while that of conventional PLGA microspheres was just 61-65%. Furthermore, the burst releases at 1h of BSA entrapped in composite microspheres which containing PLGA (50:50) and PLGA (70:30) decreased to 24% and 8% in PBS, and further decreased to 5% and 2% in saline. On the contrary, the burst releases of conventional PLGA microspheres were 48% and 52% in PBS, respectively. Moreover, the release profiles could be manipulated by regulating the ratios of poly(lactic acid) to poly(glycolic acid) in the composite microspheres.  相似文献   

10.
Producing some small hydrophobic molecules in microbes is challenging. Often these molecules cannot cross membranes, and thus their production may be limited by lack of storage space in the producing organism. This study reports a new technology for in vivo storage of valuable hydrophobic products in/on biopolymer bodies in Escherichia coli. A biodegradable and biocompatible polyester – poly (3-hydroxybutyrate) (PHB) – was selected as the intracellular storage vessel to encapsulate lycopene, which is a chromogenic model compound. The hydrophobic interaction between lycopene and PHB was verified by using in vitro binding test and sucrose density gradient centrifugation. Further in vivo characterization was performed by using Confocal Laser Scanning Microscopy (CLSM). The images validated the in vivo co-localization between PHB granules and lycopene. The images also showed that lycopene aggregated in bacteria that did not produce PHB, which may challenge the commonly accepted hypothesis that most lycopene molecules are stored in cell membranes of recombinant host. We also confirmed that producing PHB did not negatively affect lycopene biosynthesis in the E. coli strains and collected data suggesting that PHB titer and lycopene titer were positively correlated when the cells were engineered to co-produce them. The biopolymers that encapsulated hydrophobic molecules could have many useful applications, especially in controlled release because the polymers are biodegradable, and the encapsulated products would be released during the polymer degradation.  相似文献   

11.
12.
Contrary to common perception bone is a dynamic organ flexibly adapting to changes in mechanical loading by shifting the delicate balance between bone formation and bone resorption carried out by osteoblasts and osteoclasts, respectively. In the past decades numerous studies demonstrating production of reactive oxygen or nitrogen intermediates, effects of different antioxidants, and involvement of prototypical redox control mechanisms (Nrf2–Keap1, Steap4, FoxO, PAMM, caspase-2) have proven the central role of redox regulation in the bone. Poly(ADP-ribosyl)ation (PARylation), a NAD-dependent protein modification carried out by poly(ADP-ribose) polymerase (PARP) enzymes recently emerged as a new regulatory mechanism fine-tuning osteoblast differentiation and mineralization. Interestingly PARylation does not simply serve as a signaling mechanism during osteoblast differentiation but also couples it to osteoblast death. Even more strikingly, the poly(ADP-ribose) polymer likely released from succumbed cells at the terminal stage of differentiation is incorporated into the bone matrix representing the first structural role of this versatile biopolymer. Moreover, this new paradigm explains why and how osteodifferentiation and death of cells entering this pathway are closely coupled to each other. Here we review the role of reactive oxygen and nitrogen intermediates as well as PARylation in osteoblast and osteoclast differentiation, function, and cell death.  相似文献   

13.
Abstract

This paper concentrates on two very important conducting polymers poly(p-phenylene) and polypyrrole. Detailed atomistic molecular models have been developed with the help of ab initio and semi-empirical quantum mechanical calculations using the Cerius2 and WinMOPAC (version 6.0) programs.

Their optimised geometry had been calculated and compared with experimental X-ray diffraction data. The simulated and experimental vibrational spectra of biphenyl as well as isolated pyrrole monomers and oligomers from n = 1 and 2, where n is the number of structural repeat units used, have been computed using the ab initio 3–21G basis set. The results obtained are compared with experimental data for the case of biphenyl and for oligomers with n = 2 to 5 for both neutral benzenoid and quinonoid oligopyrroles, from semi-empirical predictions obtained by AM1 and PM3. The trends in the computed harmonic force fields, vibrational frequencies and intensities are monitored as a function of the chain length. The data are analyzed in conjunction with the trends in computed equilibrium geometries.  相似文献   

14.
Current study is based on the biology-oriented drug synthesis (BIODS) of S-naproxen (NSAID) derivatives and the evaluation of their urease inhibitory potential. In this regard, a variety of S-naproxen derivatives 239 including hydrazide 1, Schiff bases 221, aroyl substituted hydrazides 2224, sulfohydrazides 2534, 2-mercapto oxadiazole 35, phenacyl substituted 2-mercapto oxadiazoles 3639 were synthesized under the umbrella of BIODS by simple chemical transformation of its pharmacophoric carboxylic group. Compounds 139 were evaluated for in vitro urease inhibitory activity and most of them showed good to moderate inhibitory potential in the range of IC50 = 14.01 ± 0.23–76.43 ± 0.8 µM as compared to standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). Limited structure-activity relationship (SAR) was established in order to rationalize the participation of varying groups (R) in the inhibitory potential of compounds. Molecular docking study on all active compounds was also carried out to decipher the interactions detail of the ligand with the receptors of active site of enzyme.  相似文献   

15.
Polymer-based tissue adhesives composed of poly(vinyl alcohol) acetoacetate (PVOH acac) and cross-linking amines were investigated for their effects on cell survival and inflammatory cell activation using in vitro mouse cell cultures. Cytotoxicity of tissue adhesives was evaluated by placing adhesives in direct contact with 3T3 fibroblast cells. Tissue adhesives formulated from PVOH acac and 3-aminopropyltrialkoxysilane (APS) were non-cytotoxic to fibroblasts; adhesives formulated from PVOH acac and aminated poly(vinyl alcohol) (PVOH amine) were also non-cytotoxic to fibroblasts. In contrast, a commercial adhesive composed of 2-octyl cyanoacrylate was highly cytotoxic to fibroblasts. The inflammatory potential of tissue adhesives was evaluated by exposing J774 macrophage cells to adhesives, and measuring TNF-α release from macrophages. PVOH acac-based tissue adhesives did not elicit inflammatory TNF-α release from macrophages. These results suggest that PVOH acac-based tissue adhesives are non-cytotoxic and non-inflammatory. Such tissue adhesives represent a promising technology for a variety of medical applications, including surgical wound closure and tissue engineering, and the results are also significant in the design of in vitro cell culture systems to study biomaterials.  相似文献   

16.
Therapeutic nucleic acids are an emerging class of therapy for treating various diseases through immunomodulation, protein replacement, gene editing, and genetic engineering. However, they need a vector to effectively and safely reach the target cells. Most gene and cell therapies rely on ex vivo gene delivery, which is laborious, time-consuming, and costly; therefore, devising a systematic vector for effective and safe in vivo delivery of therapeutic nucleic acids is required to target the cells of interest in an efficient manner. Synthetic nanoparticle vector poly beta amino ester (PBAE), a class of degradable polymer, is a promising candidate for in vivo gene delivery. PBAE is considered the most potent in vivo vector due to its excellent transfection performance and biodegradability. PBAE nanoparticles showed tunable charge density, diverse structural characteristics, excellent encapsulation capacity, high stability, stimuli-responsive release, site-specific delivery, potent binding to nucleic acids, flexible binding ability to various conjugates, and effective endosomal escape. These unique properties of PBAE are an essential contribution to in vivo gene delivery. The current review discusses each of the components used for PBAE synthesis and the impact of various environmental and physicochemical factors of the body on PBAE nanocarrier.  相似文献   

17.
Poly(ADP-ribosyl)ation (PARylation) is a reversible protein modification carried out by the concerted actions of poly(ADP-ribose) polymerase (PARP) enzymes and poly(ADP-ribose) (PAR) decomposing enzymes such as PAR glycohydrolase (PARG) and ADP-ribosyl hydrolase 3 (ARH3). Reversible PARylation is a pleiotropic regulator of various cellular functions but uncontrolled PARP activation may also lead to cell death. The cellular demise pathway mediated by PARylation in oxidatively stressed cells has been described almost thirty years ago. However, the underlying molecular mechanisms have only begun to emerge relatively recently. PARylation has been implicated in necroptosis, autophagic cell death but its role in extrinsic and intrinsic apoptosis appears to be less predominant and depends largely on the cellular model used. Currently, three major pathways have been made responsible for PARP-mediated necroptotic cell death: (1) compromised cellular energetics mainly due to depletion of NAD, the substrate of PARPs; (2) PAR mediated translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus (parthanatos) and (3) a mostly elusive crosstalk between PARylation and cell death/survival kinases and phosphatases. Here we review how these PARP-mediated necroptotic pathways are intertwined, how PARylation may contribute to extrinsic and intrinsic apoptosis and discuss recent developments on the role of PARylation in autophagy and autophagic cell death.  相似文献   

18.
Poly(hydroxyalkanoate) in cyanobacteria: an overview   总被引:2,自引:0,他引:2  
Abstract In this paper an overview is given on the occurrence of poly(hydroxyalkanoate) (PHA) in cyanobacteria and its possible role as a putative reserve compound. Comparisons are made with the function of other storage compounds that occur in cyanobacteria. For the cyanobacteria Oscillatoria limosa and Gloeothece sp. PCC 6909, some experimental data on the accumulation and mobilization of PHA are presented. O. limosa presumably contains poly(hydroxyvalerate) (PHV), whereas in Gloeothece poly(hydroxybutyrate) (PHB) was detected. Both species accumulated PHA to 6–9% of the dry weight. In Gloeothece PHB accumulation was stimulated by the addition of acetate but in O. limosa this was not the case. PHA was not involved in dark metabolism in either of the strains.  相似文献   

19.
我们用[~3H]—Poly(U)饱和杂交的方法分析了水稻种子发育过程中Poly(A)含量和Poly(A)RNA水平的变化。胚乳发育过程中,Poly(A)含量和Poly(A)RNA水平均于开花后11天达到高峰,比蛋白质高峰出现时间约早10天。随着胚乳的成熟,蛋白质水平在开花后6~21天持续增长。但 Poly(A)含量和Poly(A)RNA水平却急剧下降。因此,在胚乳发育早期合成的Poly(A)RNA中,可能有部分不是直接用于蛋白质的合成。在胚的发育过程中,Poly(A)含量和Poly(A)RNA水平分别出现三次高峰。开花后30天,每胚含有5.94ng Poly(A)RNA,约占胚总RNA的0.097%,为稻胚中贮存的mRNA存在提供了一个直接的证据。  相似文献   

20.
Abstract: The poly(adenylate)[poly(A)] polymerase of rat brain, as in rat liver, is located primarily in the nuclear sap when nuclei are prepared under hypertonic conditions. The enzyme can be released from nuclei in two forms. Form I is prepared by gentle incubation of nuclei at 0°C in hypotonic buffer. It has a Mn optimum of 0.6 mM and a pH optimum between 8 and 9. The ATP concentration curve plateaus at 0.2 mM. The optimal poly(A) primer concentration is 600 μg/ml, which is three times higher than that for the enzyme similarly prepared from liver. The time course of the reaction for the form I enzyme is increasing over the first 40 min and becomes nearly linear thereafter. Form I is not stimulated by either calcium or cyclic nucleotides, but is inhibited by polyamines, pyrophosphate, and high concentrations of GTP. Form II enzyme is prepared by homogenization of nuclei in hypotonic buffer. It has the same ATP and poly(A) optima as the form I enzyme but displays linear kinetics over a 60-min time course. It is slightly stimulated by cGMP and cAMP and strongly inhibited by spermine, sodium pyrophosphate, and high concentrations of GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号