首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene coding for xylanase activity, xynA, from the anaerobic ruminal bacterium Butyrivibrio fibrisolvens 49 was cloned into Escherichia coli JM83 by using plasmid pUC19. The gene was located on a 2.3-kilobase (kb) DNA insert composed of two adjacent EcoRI fragments of 1.65 and 0.65 kb. Expression of xylanase activity required parts of both EcoRI segments. In E. coli, the cloned xylanase enzyme was not secreted and remained cell associated. The enzyme exhibited no arabinosidase, cellulase, alpha-glucosidase, or xylosidase activity. The isoelectric point of the cloned protein was approximately 9.8, and optimal xylanase activity was obtained at pH 5.4. The nucleotide sequence of the 1,535-base-pair EcoRV-EcoRI segment from the B. fibrisolvens chromosome that included the xynA gene was determined. An open reading frame was found that encoded a 411-amino-acid-residue polypeptide of 46,664 daltons. A putative ribosome-binding site, promoter, and leader sequence were identified. Comparison of the XynA protein sequence with that of the XynA protein from alkalophilic Bacillus sp. strain C-125 revealed considerable homology, with 37% identical residues or conservative changes. The presence of the cloned xylanase gene in other strains of Butyrivibrio was examined by Southern hybridization. The cloned xylanase gene hybridized strongly to chromosomal sequences in only two of five closely related strains.  相似文献   

2.
A gene coding for a xylanase activity of alkalophilic Aeromonas sp. no. 212 (ATCC 31085) was cloned in Escherichia coli HB101 with pBR322. Plasmid pAX1 was isolated from transformants producing xylanase, and the xylanase gene was located in a 6.0 kb Hind III fragment. The pAX1-encoded xylanase activity in E. coli HB101 was about 80 times higher than that of xylanase L in alkalophilic Aeromonas sp. no. 212. About 40% of the enzyme activity was observed in the periplasmic space of E. coli HB101. The pAX1-encoded xylanase had the same enzymic properties as those of xylanase L produced by alkalophilic Aeromonas sp. no. 212, but its molecular weight was lower (135 000 vs 145 000, as estimated by SDS polyacrylamide gel electrophoresis).  相似文献   

3.
A genomic library consisting of 4- to 7-kb EcoRI DNA fragments from Fibrobacter succinogenes 135 was constructed using a phage vector, lambda gtWES lambda B, and Escherichia coli ED8654 as the host bacterium. Two positive plaques, designated lambda FSX101 and lambda FSX102, were identified. The inserts were 10.5 and 9.8 kb, respectively. A 2.3-kb EcoRI fragment that was subcloned from lambda FSX101 into pBR322 also showed xylanase activity. Southern blot analysis showed that the cloned EcoRI fragment containing the xylanase gene had originated from F. succinogenes 135. The cloned endo-(1,4)-beta-D-xylanase gene (pFSX02) was expressed constitutively in E. coli HB101 when grown on LB and on M9 medium containing either glucose or glycerol as the carbon source. Most of the beta-D-xylanase activity was located in the periplasmic space. Zymogram activity stains of nondenaturing polyacrylamide gels and isoelectric focusing gels showed that several xylanase isoenzymes were present in the periplasmic fraction of the E. coli clone FSX02 and they probably were due to posttranslational modification of a single gene product. Comparison of the FSX02 xylanase and the xylanase from the extracellular culture fluids of F. succinogenes 135 and S85 for their ability to degrade oat spelt xylan showed that, for equal units of beta-D-xylanase activity, hydrolysis by the cloned gene product was more complete. However, unlike the unfractionated mixture of xylanases from F. succinogenes 135 and S85, the enzyme from E. coli FSX02 was unable to release arabinose from oat spelt xylan.  相似文献   

4.
[目的]本试验旨在筛选引导表达外源木聚糖酶基因高效分泌的信号肽,为枯草芽胞杆菌木聚糖酶高效分泌表达系统提供元件.[方法]构建信号肽筛选载体,载体是以含壮观霉素抗性基因的大肠-枯草穿梭载体为基本骨架,目标蛋白为耐碱性木聚糖酶,可在麦芽糖启动子Pglv诱导下表达.从枯草芽胞杆菌A1747基因组中扩增获得24个Sec途径信号肽,并将其全部链接到至筛选载体上,并在枯草芽胞杆菌WB700中实现表达分泌.重组菌在3%麦芽糖诱导下培养24h后用DNS法测定上清酶活.[结果]成功构建信号肽筛选载体pGPSX及24个表达载体,实现木聚糖酶表达分泌.且不同信号肽对于引导外源木聚糖酶分泌能力不同,其中YnfF信号肽引导分泌目标蛋白效率最高,上清酶活为37.2IU/mL.[结论]试验证明在枯草杆菌中对外源蛋白进行信号肽筛选是提高其分泌的有效途径,并获得了针对木聚糖酶高效分泌信号肽YnfF.  相似文献   

5.
The gene for xylanase A of alkalophilic Bacillus sp. strain C-125 was cloned in Escherichia coli with pBR322. The plasmid pCX311 contained 2.6- and 2.0-kilobase-pair HindIII fragments. The characteristics of the purified pCX311-encoded xylanase were the same as those of purified xylanase A from alkalophilic Bacillus sp. strain C-125.  相似文献   

6.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

7.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

8.
从橄榄绿链霉菌StreptomycesolivaceoviridisA1中克隆出木聚糖酶基因xynA ,将带与不带原基因信号肽编码序列的xynA分别以正确的阅读框架克隆到大肠杆菌表达载体pET 2 2b( )上的pellB信号肽编码序列之后 ,得到 2种构建的重组载体 ,在重组大肠杆菌中木聚糖酶得到了表达 ,表达产物具有生物活性。进一步将不带原基因信号肽编码序列的xynA插入到毕赤酵母转移载体pPIC9中 ,转化毕赤酵母得到重组子 ,在重组子中木聚糖酶基因得到了高效分泌表达 ,在摇床培养水平上的表达量达到 2 0 0mg L ,且表达产物具有生物学活性。  相似文献   

9.
A cloned xylanase gene from the ruminal bacterium Bacteroides ruminicola 23 was transferred by conjugation into the colonic species Bacteroides fragilis and Bacteroides uniformis by using the Escherichia coli-Bacteroides shuttle vector pVAL-1. The cloned gene was expressed in both species, and xylanase specific activity in crude extracts was found to be at least 1400-fold greater than that found in the B. ruminicola strain. Analysis of crude extract proteins from the recombinant B. fragilis by SDS-PAGE demonstrated a new 60,000 molecular weight protein. The xylanase activity expressed in both E. coli and B. fragilis was capable of degrading xylan to xylooligosaccharides in vitro. This is the first demonstration that colonic Bacteroides species can express a gene from a ruminal Bacteroides species.  相似文献   

10.
The gene xyaA encoding an alkaline endo-beta 1,4-xylanase from an alkalophilic Bacillus sp. strain (N137) isolated in our laboratory was cloned and expressed in Escherichia coli. The nucleotide sequence of a 1,656-bp DNA fragment containing xyaA was determined, revealing one open reading frame of 993 bp that encodes a xylanase (XyaA) of 39 kDa. This xylanase lacks a typical putative signal peptide, yet the protein is found in the Bacillus culture supernatant. In Escherichia coli, the active protein is located mainly in the periplasmic space. The xylanase activity of the cloned XyaA is an endo-acting enzyme that shows optimal activity at pH 8 and 40 degrees C. This activity is stable at a pH between 6 and 11. Incubations of XyaA at 40 degrees C for 1 h destroyed 45% of the activity.  相似文献   

11.
12.
The xylanase gene of Bacillus circulans Teri-42 was cloned in both B. subtilis and Escherichia coli. The enzyme activity was almost 87% higher in B. subtilis (pBA7) than in E. coli (pAQ4). No cellulase activity was detected in the clones, B. subtilis (pBA7) and E. coli (pAQ4). Approximately 1120 U (80%) of the xylanase was secreted extracellularly by the clone B. subtilis (pBA7) as compared to 79 U (88%) excreted in E. coli (pAQ4). In B. subtilis (pBA7) the optimal xylanase activity was at pH 7.0 and 50 degrees C, which was the same as that of the parent B. circulans Teri-42. The recombinant xylanase in B. subtilis was more stable at higher temperatures than the parent B. circulans Teri-42. Purification of xylanase from the clone B. subtilis (pBA7) showed a 71 kDa polypeptide similar to that observed in B. circulans Teri-42.  相似文献   

13.
【目的】了解牦牛瘤胃微生物木聚糖酶多样性及其降解特征,为木聚糖降解提供新的基因资源。【方法】根据对已构建的瘤胃微生物元基因组细菌人工染色体(BAC)克隆文库高通量测序结果的注释,筛选其中编码木聚糖酶的基因并进行多样性分析;对其中一个木聚糖酶基因及其连锁的木糖苷酶基因进行克隆表达和酶学性质表征,分析其协同作用。【结果】共筛选到14个木聚糖酶基因,均编码GH10家族木聚糖酶,其氨基酸序列之间的相似性为20.5%-91.3%;其中7个木聚糖酶基因所在的不同的DNA片段(contig)上存在木糖苷酶基因,编码的木糖苷酶属于GH43或GH3糖苷水解酶家族。将其中一对连锁的木聚糖酶(Xyn32)和木糖苷酶基因(Xyl33)分别克隆、表达和纯化。纯化后的木聚糖酶比活为1.98 IU/mg,但不具有阿魏酸酯酶活性;木糖苷酶比活为0.07 U/mg,且具有α-阿拉伯呋喃糖苷酶活性。体外实验证明,木糖苷酶Xyl33对与之连锁的木聚糖酶Xyn32的木聚糖降解具有协同作用。  相似文献   

14.
15.
链霉菌zxy19木聚糖酶酶学性质及酶基因克隆   总被引:2,自引:0,他引:2  
王吟  杨艳燕  肖静  徐俊 《微生物学通报》2008,35(11):1681-1685
采用平板筛选法,从红树林放线菌中筛选到一株有较强木聚糖酶活的菌株zxy19,其16SrDNA序列与Streptomyces sampsonii的同源性仅为96%.该菌株木聚糖酶活为852.41 IU/mL,酶反应最适pH值为7,最适反应温度为60℃.用针对木聚糖酶基因保守结构域的一对简并引物扩增到该酶基因部分序列,进而通过反向PCR扩增到了完整的酶基因,对该基因序列分析结果表明此木聚糖酶基因属于糖基水解酶家族11的成员,酶蛋白氨基酸序列与已报道序列同源性最高为79%(Streptomyces lividans xylanase B).构建了该酶重组表达质粒pET-28a-xyl 696,经过IPTG诱导实现了该酶蛋白在大肠杆菌BL21(DE3)中的异源表达,且通过镍柱纯化后的表达产物具有生物学活性.  相似文献   

16.
A 4.0-kilobase (kb) fragment of Bacillus circulans genomic DNA inserted into pUC19 and encoding endoxylanase activity was subjected to a series of subclonings. A 1.0-kb HindIII-HincII subfragment was found to code for xylanase activity. Maximum expression levels were observed with a subclone that contained an additional 0.3-kb sequence upstream from the coding region. Enhancer sequences in the upstream region are thought to be responsible for these high expression levels. Southern hybridization analyses revealed that the cloned gene hybridized with genomic DNA from Bacillus subtilis and Bacillus polymyxa. Xylanase activity expressed by Escherichia coli harboring the cloned gene was located primarily in the intracellular fraction. Levels of up to 7 U/ml or 35 mg/liter were obtained. The protein product was purified by ion exchange and gel permeation chromatography. The xylanase had a molecular weight of 20,500 and an isoelectric point of 9.0.  相似文献   

17.
A 4.0-kilobase (kb) fragment of Bacillus circulans genomic DNA inserted into pUC19 and encoding endoxylanase activity was subjected to a series of subclonings. A 1.0-kb HindIII-HincII subfragment was found to code for xylanase activity. Maximum expression levels were observed with a subclone that contained an additional 0.3-kb sequence upstream from the coding region. Enhancer sequences in the upstream region are thought to be responsible for these high expression levels. Southern hybridization analyses revealed that the cloned gene hybridized with genomic DNA from Bacillus subtilis and Bacillus polymyxa. Xylanase activity expressed by Escherichia coli harboring the cloned gene was located primarily in the intracellular fraction. Levels of up to 7 U/ml or 35 mg/liter were obtained. The protein product was purified by ion exchange and gel permeation chromatography. The xylanase had a molecular weight of 20,500 and an isoelectric point of 9.0.  相似文献   

18.
Thermomonospora fusca chromosomal DNA was partially digested with EcoRI to obtain 4- to 14-kilobase fragments, which were used to construct a library of recombinant phage by ligation with EcoRI arms of lambda gtWES. lambda B. A recombinant phage coding for xylanase activity which contained a 14-kilobase insert was identified. The xylanase gene was localized to a 2.1-kilobase SalI fragment of the EcoRI insert by subcloning onto pBR322 and derivatives of pBR322 that can also replicate in Streptomyces lividans. The xylanase activity produced by S. lividans transformants was 10- to 20-fold higher than that produced by Escherichia coli transformants but only one-fourth the level produced by induced T. fusca. A 30-kilodalton peptide with activity against both Remazol brilliant blue xylan and xylan was produced in S. lividans transformants that carried the 2.1-kilobase SalI fragment of T. fusca DNA and was not produced by control transformants. T. fusca cultures were found to contain a xylanase of a similar size that was induced by growth on xylan or Solka Floc. Antiserum directed against supernatant proteins isolated from a Solka Floc-grown T. fusca culture inhibited the xylanase activity of S. lividans transformants. The cloned T. fusca xylanase gene was expressed at about the same level in S. lividans grown in minimal medium containing either glucose, cellobiose, or xylan. The xylanase bound to and hydrolyzed insoluble xylan. The cloned xylanase appeared to be the same as the major protein in xylan-induced T. fusca culture supernatants, which also contained at least three additional minor proteins with xylanase activity and having apparent molecular masses of 43, 23, and 20 kilodaltons.  相似文献   

19.
Bacteroides ovatus, a gram-negative obligate anaerobe found in the human colon, can utilize xylan as a sole source of carbohydrate. Previously, a 3.8-kbp segment of B. ovatus chromosomal DNA, which contained genes encoding a xylanase (xylI) and a bifunctional xylosidase-arabinosidase (xsa), was cloned, and expression of the two genes was studied in Escherichia coli (T. Whitehead and R. Hespell, J. Bacteriol. 172:2408-2412, 1990). In the present study, we have used segments of the cloned region to construct insertional disruptions in the B. ovatus chromosomal locus containing these two genes. Analysis of these insertional mutants demonstrated that (i) xylI and xsa are probably part of the same operon, with xylI upstream of xsa, (ii) the true B. ovatus promoter was not cloned on the 3.5-kbp DNA fragment which expressed xylanase and xylosidase in E. coli, (iii) there is at least one gene upstream of xylI which could encode an arabinosidase, and (iv) xylosidase rather than xylanase may be a rate-limiting step in xylan utilization. Insertional mutations in the xylI-xsa locus reduced the rate of growth on xylan, but the concentration of residual sugars at the end of growth was the same as that with the wild type. Thus, a slower rate of growth on xylan was not accompanied by less extensive digestion of xylan. Mutants in which xylI had been disrupted still expressed some xylanase activity. This second activity was associated with membranes and produced xylose from xylan, whereas the xylI gene product partitioned primarily with the soluble fraction and produced xylobiose from xylan.  相似文献   

20.
Bacteroides ovatus, a gram-negative obligate anaerobe found in the human colon, can utilize xylan as a sole source of carbohydrate. Previously, a 3.8-kbp segment of B. ovatus chromosomal DNA, which contained genes encoding a xylanase (xylI) and a bifunctional xylosidase-arabinosidase (xsa), was cloned, and expression of the two genes was studied in Escherichia coli (T. Whitehead and R. Hespell, J. Bacteriol. 172:2408-2412, 1990). In the present study, we have used segments of the cloned region to construct insertional disruptions in the B. ovatus chromosomal locus containing these two genes. Analysis of these insertional mutants demonstrated that (i) xylI and xsa are probably part of the same operon, with xylI upstream of xsa, (ii) the true B. ovatus promoter was not cloned on the 3.5-kbp DNA fragment which expressed xylanase and xylosidase in E. coli, (iii) there is at least one gene upstream of xylI which could encode an arabinosidase, and (iv) xylosidase rather than xylanase may be a rate-limiting step in xylan utilization. Insertional mutations in the xylI-xsa locus reduced the rate of growth on xylan, but the concentration of residual sugars at the end of growth was the same as that with the wild type. Thus, a slower rate of growth on xylan was not accompanied by less extensive digestion of xylan. Mutants in which xylI had been disrupted still expressed some xylanase activity. This second activity was associated with membranes and produced xylose from xylan, whereas the xylI gene product partitioned primarily with the soluble fraction and produced xylobiose from xylan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号