首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the bases for evolutionary changes in developmental mode, we fertilized eggs of a direct-developing sea urchin, Heliocidaris erythrogramma, with sperm from a closely related species, H. tuberculata, that undergoes indirect development via a feeding larva. The resulting hybrids completed development to form juvenile adult sea urchins. Hybrids exhibited restoration of feeding larval structures and paternal gene expression that have been lost in the evolution of the direct-developing maternal species. However, the developmental outcome of the hybrids was not a simple reversion to the paternal pluteus larval form. An unexpected result was that the ontogeny of the hybrids was distinct from either parental species. Early hybrid larvae exhibited a novel morphology similar to that of the dipleurula-type larva typical of other classes of echinoderms and considered to represent the ancestral echinoderm larval form. In the hybrid developmental program, therefore, both recent and ancient ancestral features were restored. That is, the hybrids exhibited features of the pluteus larval form that is present in both the paternal species and in the immediate common ancestor of the two species, but they also exhibited general developmental features of very distantly related echinoderms. Thus in the hybrids, the interaction of two genomes that normally encode two disparate developmental modes produces a novel but harmonious ontongeny.  相似文献   

2.
3.
The direct-developing sea urchin species Heliocidaris erythrogramma has a radically modified ontogeny. Along with gains of novel features, its entire ectoderm has been reorganized, resulting in the apparent absence of a differentiated oral ectoderm, a major module present in the pluteus of indirect-developing species, such as H. tuberculata. The restoration of an obvious oral ectoderm in H. erythrogrammaxH. tuberculata hybrids, indicates the action of dominant regulatory factors from the H. tuberculata genome. We sought candidate regulatory genes based on the prediction that they should include genes that govern development of the oral ectoderm in the pluteus, but play different roles in H. erythrogramma. Such genes may have a large effect in the evolution of development. Goosecoid (Gsc), Msx, and the sea urchin Abd-B-like gene (Hox11/13b) are present and expressed in both species and the hybrid embryos. Both Gsc and Msx are oral ectoderm specific in H. tuberculata, and show novel and distinct expression patterns in H. erythrogramma. Gsc assumes a novel ectodermal pattern and Msx shifts to a novel and largely mesodermal pattern. Both Gsc and Msx show a restoration of oral ectoderm expression in hybrids. Hox11/13b is not expressed in oral ectoderm in H. tuberculata, but is conserved in posterior spatial expression among H. tuberculata, H. erythrogramma and hybrids, serving as a control. Competitive RT-PCR shows that Gsc, Msx, and Hox11/13b are under different quantitative and temporal controls in the Heliocidaris species and the hybrids. The implications for the involvement of these genes in the rapid evolution of a direct developing larva are discussed.  相似文献   

4.
SUMMARY Modularity is a salient feature of development and crucial to its evolution. This paper extends modularity to include the concept of gene expression territory, as established for sea urchin embryos. Territories provide a mechanism for partitioning of the cells of a rapidly developing embryo into functional units of a feeding larva. Territories exhibit the characteristics of modules. The paper asks if the embryo and the nonfeeding larva of the direct-developing sea urchin Heliocidaris erythrogramma are organized into gene expression territories, and if its territories correspond to the canonical territories of the pluteus. An analysis of cell lineage and gene expression data for H. erythrogramma shows that skeletogenic cell, coelomic, and vegetal plate gene expression territories are conserved, although they arise from cell lineages distinct from those of the pluteus, and the overall morphology of the larva differs from that of a pluteus. The ectoderm, as in indirect developers, is divided into territories. However, the oral ectodermal territory characteristic of the pluteus is absent in H. erythrogramma. Oral ectoderm is restored in hybrids of H. erythrogramma eggs fertilized by Heliocidaris tuberculata sperm. This indicates that embryonic modules evolve by changes in expression of dominant regulatory genes within territories and that entire modules can be eliminated in evolution of embryos.  相似文献   

5.
Hybridisations between related species with divergent ontogenies can provide insights into the bases for evolutionary change in development. One example of such hybridisations involves sea urchin species that exhibit either standard larval (pluteal) stages or those that develop directly from embryo to adult without an intervening feeding larval stage. In such crosses, pluteal features were found to be restored in fertilisations of the eggs of some direct developing sea urchins (Heliocidaris erythrogramma) with the sperm of closely (Heliocidaris tuberculata) and distantly (Pseudoboletia maculata) related species with feeding larvae. Such results can be argued to support the punctuated equilibrium model—conservation in pluteal regulatory systems and a comparatively rapid switch to direct development in evolution. 1 , 1 Generation of hybrids between distantly related direct developers may, however, indicate evolutionary convergence. The ‘rescue’ of pluteal features by paternal genomes may require maternal factors from H. erythrogramma because the larva of this species has pluteal features. In contrast, pluteal features were not restored in hybridisations with the eggs of Holopneustes purpurescens, which lacks pluteal features. How much of pluteal development can be lost before it cannot be rescued in such crosses? The answer awaits hybridisations among indirect and direct developing sea urchins differing in developmental phenotype, in parallel with investigations of the genetic programs involved. BioEssays 26:343–347, 2004. © 2004 Wiley Periodicals, Inc.  相似文献   

6.
Larval dorsoventral (DV) and left-right (LR) axial patterning unfold progressively in sea urchin development, leading to commitment of the major embryonic regions by the gastrula stage. The direct-developing sea urchin Heliocidaris erythrogramma has lost oral-aboral differentiation along the DV axis but has accelerated vestibular ectoderm development on the left side. NiCl(2) radializes indirect-developing sea urchins by shifting cells toward a ventral fate (oral ectoderm). We treated embryos of H. erythrogramma and the indirect-developing H. tuberculata with NiCl(2). H. tuberculata was ventralized exactly like other indirect developers, establishing that basic patterning mechanisms are conserved in this genus. H. erythrogramma was also radialized; timing, dosage response, and some morphological features were similar to those in other sea urchins. Ectodermal explant and recombination experiments demonstrate that the effect of nickel is autonomous to the ectoderm, another feature in common with indirect developers. However, H. erythrogramma is distinctly sinistralized rather than ventralized, its cells shifting toward a left-side fate (vestibular ectoderm). This geometric contrast in the midst of pervasive functional similarity suggests that nickel-sensitive processes in H. erythrogramma axial patterning, homologous to those in indirect developers, have been redeployed, and hence co-opted, from their ancestral role in DV axis determination to a new role in LR axis determination. We discuss DV and LR axial patterning and their evolutionary transformation.  相似文献   

7.
SUMMARY Cross-species hybrids between eggs of the direct-developing sea urchin, Heliocidaris erythrogramma , and sperm from its congeneric indirect-developing species, Heliocidaris tuberculata, show restoration of features of the paternal feeding pluteus larva, including the gut, and pluteus spicular skeleton. Unlike other reported sea urchin cross-species hybrids, Heliocidaris hybrids express genes derived from both maternal and paternal species at high levels. Ectodermal cell types, which differ radically between the two parental species, are of intermediate form in the hybrids. Gene expression patterns in hybrid embryo tissues represent a number of combinations of parental gene expression patterns: genes that are not expressed in one paternal species, but are expressed in hybrids as in the expressing parent; genes that show additive expression patterns plus novel sites of expression; a gene that is misexpressed in the hybrids; and genes expressed identically in both parents and in hybrids. The results indicate that both conserved and novel gene regulatory interactions are present. Only one gene, CyIII actin , has lost cell-type-specific regulation in the hybrids. Hybrids thus reveal that disparate parental genomes, each with its own genic regulatory system, can produce in combination a novel gene expression entity with a unique ontogeny. This outcome may derive from conserved gene regulatory regions in downstream genes of both parental species responding in conserved ways to higher-level regulators that determine modular gene expression territories.  相似文献   

8.
The evolution of development can be made accessible to study by exploiting closely related species that exhibit distinct ontogenies. The direct-developing sea urchin Heliocidaris erythrogramma is closely related to indirect-developing sea urchins that develop via a feeding larval stage. Superficial consideration would suggest that simple heterochronies resulting in loss of larval features and acceleration of adult features could explain the substitution of direct for indirect development. However, our experiments show that early development has in fact been extensively remodeled, with modified localization of maternal determinants coupled with dissociation of cell cleavage from axis formation resulting in novel patterns of cell lineage differentiation and fate map. Gene expression has undergone concomitant changes.  相似文献   

9.
SUMMARY The origin of marine invertebrate larvae has been an area of controversy in developmental evolution for over a century. Here, we address the question of whether a pelagic "larval" or benthic "adult" morphology originated first in metazoan lineages by testing the hypothesis that particular gene co-option patterns will be associated with the origin of feeding, indirect developing larval forms. Empirical evidence bearing on this hypothesis is derivable from gene expression studies of the sea urchin larval gut of two closely related but differently developing congenerics, Heliocidaris tuberculata (feeding indirect-developing larva) and H. erythrogramma (nonfeeding direct developer), given two subsidiary hypotheses. (1) If larval gut gene expression in H. tuberculata was co-opted from an ancestral adult expression pattern, then the gut expression pattern will remain in adult H. erythrogramma despite its direct development. (2) Genes expressed in the larval gut of H. tuberculata will not have a coordinated expression pattern in H. erythrogramma larvae due to loss of a functional gut. Five structural genes expressed in the invaginating archenteron of H. tuberculata during gastrulation exhibit substantially different expression patterns in H. erythrogramma with only one remaining endoderm specific. Expression of these genes in the adult of H. erythrogramma and larval gut of H. tuberculata , but not in H. erythrogramma larval endoderm, supports the hypothesis that they first played roles in the formation of adult structures and were subsequently recruited into larval ontogeny during the origin and evolution of feeding planktotrophic deuterostome larvae.  相似文献   

10.
Development of the larval serotonergic nervous system is examined by indirect immunofluorescence in two congeneric species of sea urchins that exhibit divergent embryonic and larval development. Heliocidar is tuberculata undergoes indirect planktotrophic development via a pluteus larva, whereas Heliocidaris erythrogramma develops directly, passing through a brief, highly derived lecithotrophic larval stage. We have cleared the opaque embryos of H. erythrogramma and discuss internal features of its development. The serotonergic nervous system of H. tuberculata arises in the apical plate at the end of gastrulation and develops into a bilaterally symmetric ganglion lying between the anterolateral arms in the preoral hood. Putatively homologous neurons appear at the apical end of the modified larva of H. erythrogramma well after the completion of gastrulation, coincident with development of the primary podia of the adult rudiment. The neurons form a bilaterally symmetric ganglion whose orientation relative to the vestibule is conserved with respect to that found in planktotrophic larvae. This allows us to define a left and right side for this larva which lacks external points of asymmetry such as a larval mouth. The alteration in the time of nervous system development in H. erythrogramma relative to that of H. tuberculata , and other indirect developers, implicates heterochronies in cellular differentiation as an important component of the evolution of direct development.  相似文献   

11.
12.
The developmental success of interspecific Lepomis hybrids is used as an index of gene regulatory divergence between the green sunfish, L. cyanellus, and each of three other parental species, longear sunfish, L. megalotis, warmouth, L. gulosus, and bluegill, L. macrochirus. This gene regulatory divergence is compared to the degree of structural gene divergence among these four species (genetic distance [Nei, '78], D, ranged from 0.206 to 0.586). The developmental success of the hybrid embryos at the level of morphogenesis was higher than expected from the genetic distance between the parental species. The rates of morphogenesis of the hybrid embryos were the same as that for the green sunfish embryos. The percentage of embryos that hatched was relatively high in all crosses. However, two of the hybrid crosses resulted in enhanced percentages of hatched embryos. Slight increases in the extent of morphological abnormalities were observed in hybrids from crosses between more distantly related parental species. The schedules and levels of enzyme locus expression of the hybrids, assessed spectrophotometrically and electrophoretically for nine enzyme systems (encoded in a total of 14 loci), were different from each other and from those of the green sunfish embryos. Alterations in the time of first enzyme appearance and in the time of first increase in enzyme activity in the developing hybrid embryos were not correlated with genetic distance between parental species. However, the extents of alteration of enzyme activities over the entire period of hybrid embryogenesis were correlated with the genetic distance. We attribute the morphological and molecular anomalies observed in the hybrids to gene regulatory incompatibilities between species. Although the exact number of mutational differences and their relative developmental impacts are not known, some inferences can be drawn about the degree of divergence in gene regulation between species. It appears that an uncoupling of the rates of structural and regulatory gene evolution can occur between species of some taxa, an observation that has implications for the roles of gene regulatory differences in organismic evolution.  相似文献   

13.
The sea urchin Heliocidaris erythrogramma undergoes direct development, bypassing the usual echinoid pluteus larva. We present an analysis of cell lineage in H. erythrogramma as part of a definition of the mechanistic basis for this evolutionary change in developmental mode. Microinjection of fluoresceinated tracer dye and surface marking with vital dye are used to follow larval fates of 2-cell, 8-cell, and 16-cell blastomeres, and to examine axial specification. The animal-vegetal axis and adult dorsoventral axis are basically unmodified in H. erythrogramma. Animal cell fates are very similar to those of typically developing species; however, vegetal cell fates in H. erythrogramma are substantially altered. Radial differences exist among vegetal blastomere fates in the 8-cell embryo: dorsal vegetal blastomeres contribute proportionately more descendants to ectodermal and fewer to mesodermal fates, while ventral vegetal blastomeres have a complementary bias in fates. In addition, vegetal cell fates are more variable than in typical developers. There are no cells in H. erythrogramma with fates comparable to those of the micromeres and macromeres of typically developing echinoids. Instead, all vegetal cells in the 16-cell embryo can contribute progeny to ectoderm and gut. Alterations have thus arisen in cleavage patterns and timing of cell lineage partitioning during the evolution of direct development in H. erythrogramma.  相似文献   

14.
The lineage and fate of each blastomere in the 32-cell embryo of the direct-developing sea urchin Heliocidaris erythrogramma have been traced by microinjection of tetramethylrhodamine-dextran. The results reveal substantive evolutionary modifications of the ancestral cell lineage pattern of indirect sea urchin development. Significant among these modifications are changes in the time and order of cell lineage segregation: vegetal ectodermal founder cells consistently arise earlier than during indirect development, while internal founder cells generally segregate later and in a different sequence. Modifications have also arisen in proportions of the embryo fated to become various cell types and larval structures. Ectodermal fates, particularly vestibular ectoderm, comprise a greater proportion of the total cellular volume in H. erythrogramma. Among internal cell types, coelom consumes more and endoderm less of the remaining cellular volume than during indirect sea urchin development. Evolutionary modifications are also apparent in the positional origin of larval cell types and structures in H. erythrogramma. These include an apparent tilt in the axis of prospective cell fate relative to the animal-vegetal axis as defined by cleavage planes. Together these evolutionary changes in the cell lineage of H. erythrogramma produce an accelerated loss of dorsoventral symmetry in cell fate relative to indirect development. The extent and diversity of rearrangements in its cell lineage indicate that the non-feeding larva of H. erythrogramma is a highly modified, novel form rather than a degenerate pluteus larva. These same modifications underscore the evolutionarily flexible relationship between cell lineage, gene expression, and larval morphology in sea urchin development.  相似文献   

15.
Abstract Sea urchins are widely used to study both fertilization and development. In this study we combine the two fields to examine the evolution of reproductive isolation in the genus Heliocidaris . Heliocidaris tuberculata develops indirectly via a feeding larva, whereas the only other species in the genus, H. erythrogramma , has evolved direct development through a nonfeeding larva. We estimated the time of divergence between H. erythrogramma and H. tuberculata from mitochondrial DNA divergence, quantified levels of gametic compatibility between the two species in cross-fertilization assays, and examined the mode of evolution of the sperm protein bindin by sequencing multiple alleles of the two species. Bindin is the major component of the sea urchin sperm acrosomal vesicle, and is involved in sperm-egg attachment and fusion. Based on our analyses, we conclude that: the two species of Heliocidaris diverged less than five million years ago, indicating that direct development can evolve rapidly in sea urchins; since their divergence, the two species have become gametically incompatible; Heliocidaris bindin has evolved under positive selection; and this positive selection is concentrated on the branch leading to H. erythrogramma . Three hypotheses can explain the observed pattern of selection on bindin: (1) it is a correlated response to the evolution of direct development in H. erythrogramma; (2) it is the result of an intraspecific process acting in H. erythrogramma but not in H. tuberculata; or (3) it is the product of reinforcement on the species that invests more energy into each egg to avoid hybridization.  相似文献   

16.
Convergence is a significant evolutionary phenomenon. Arrival at similar morphologies from different starting points indicates a strong role for natural selection in shaping morphological phenotypes. There is no evidence yet of convergence in the developmental mechanisms that underlie the evolution of convergent developmental phenotypes. Here we report the expression domains in sea urchins of two important developmental regulatory genes ( Orthodenticle and Runt), and show evidence of molecular convergence in the evolution of direct-developing sea urchins. Indirect development is ancestral in sea urchins. Evolutionary loss of the feeding pluteus stage and precocious formation of the radially symmetric juvenile has evolved independently in numerous sea urchin lineages, thus direct development is an evolutionary convergence. Indirect-developing species do not express Otx during the formation of their five primordial tube feet, the ancestral condition. However, each direct-developing urchin examined does express Otx in the tube feet. Otx expression in the radial arms of direct-developing sea urchins is thus convergent, and may indicate a specific need for Otx use in direct development, a constraint that would make direct development less able to evolve than if there were multiple molecular means for it to evolve. In contrast, Runt is expressed in tube feet in both direct- and indirect-developing species. Because echinoderms are closely related to chordates and postdate the protostome/deuterostome divergence, they must have evolved from bilaterally symmetrical ancestors. Arthropods and chordates use Otx in patterning their anterior axis, and Runt has multiple roles including embryonic patterning in arthropods, and blood and bone cell differentiation in vertebrates. Runt has apparently been co-opted in echinoderms for patterning of pentamery, and Otx in pentameral patterning among direct-developing echinoids. The surprisingly dynamic nature of Otx evolution reinvigorates debate on the role of natural selection vs shared ancestry in the evolution of novel features.  相似文献   

17.
A significant fraction of living sea urchin species have completely or partially eliminated the pluteus larval stage and instead develop directly from embryo to adult. Direct developing sea urchins develop from large buoyant eggs. We present data to show that evolution of these large eggs is accompanied by the evolution of spermatozoa with elogate heads, in contrast with the conical sperm heads typical of most echinoids. Two congeneric Australian species, Heliocidaris tuberculata , which develops via a pluteus, and H. erythogramma , a direct developer, were investigated in detail. The sperm of H. erythrogramma have an elongate head (11 μm in length) as compared to the conical sperm head (5.6 μm) of H. tuberculata . Electrophoretic analysis of the sperm histones indicates that no unusual histones or protamines are associated with modified head morphology. Genome sizes were determined by flow cytometry. H. erythrogramma has a haploid genome size of 1.3 pg as compared to a haploid genome size of 0.95 pg for H. tuberculata . Other direct developing echinoids have elongate sperm heads, and co-evolution of gametes is indicated as a common feature of evolution of direct development in echinoids. The most extreme case, the direct developing cidaroid sea urchin, Phyllacanthus parvispinus , possesses the longest and narrowest sperm head (20 μm × 1 μm) ever observed in an echinoid.  相似文献   

18.
We investigated adult rudiment induction in the direct-developing sea urchin Heliocidaris erythrogramma microsurgically. After removal of the archenteron (which includes presumptive coelomic mesoderm as well as presumptive endoderm) from late gastrulae, larval ectoderm develops properly but obvious rudiments (tube feet, nervous system, and adult skeleton) fail to form, indicating that coelomic mesoderm, endoderm, or both are required for induction of adult development. Recombination of ectoderm and archenteron rescues development. Implanted endoderm alone or left coelom alone each regenerate the full complement of archenteron derivatives; thus, they are uninformative as to the relative inductive potential of the two regions. However, in isolated ectoderm, more limited regeneration gives rise to larvae containing no archenteron derivatives at all, endoderm only, or both endoderm and left coelom. Adult nervous system begins to develop only in the latter, indicating that left coelom is required for the inductive signal. Isolated ectoderm develops a vestibule (the precursor of adult ectoderm) and correctly regulates vestibular expression of the ectodermal territory marker HeET-1, indicating that the early phase of vestibule development occurs autonomously; only later development requires the inductive signal. Another ectodermal marker, HeARS, is regulated properly in the larval ectoderm region, but not in the vestibule. HeARS regulation thus represents an early response to the inducing signal. We compare HeARS expression in H. erythrogramma with that in indirect developers and discuss its implications for modularity in the evolution of developmental mode.  相似文献   

19.
Embryos of the indirect developing sea urchin, Heliocidaris tuberculata, and of Heliocidaris erythrogramma which develops directly without the formation of a pluteus larva, were bisected at the two- and four-cell stages. Paired half-embryos resulting from the bisection of H. tuberculata embryos along either the first or the second cleavage plane develop identically into miniature prism stage larvae. As in other indirect developing sea urchins, no differential segregation of developmental potential takes place as a result of the first and second cleavage divisions. Although half-embryos resulting from bisection along the second cleavage plane differentiate all cell types and develop equivalently in H. erythrogramma, the isolated first cleavage blastomeres do not. One of these two cells always forms significantly more mesodermal and endodermal cells. These patterns of differentiation are consistent with fate-mapping studies indicating that most mesodermal and endodermal cells are derived from the prospective ventral blastomere. Therefore, a differential segregation of developmental potential takes place at the first cleavage division in H. erythrogramma. When embryos of H. erythrogramma were bisected during the eight-cell stage, isolated tiers of animal blastomeres typically formed only ectodermal structures including the vestibule, whereas vegetal embryo halves formed all differentiated cell types. We propose that animal-vegetal cell determination and differentiation takes place along an axis which has been shifted relative to the pattern of cell cleavages in the embryos of H. erythrogramma. Vegetal morphogenetic potential for the formation of mesodermal and endodermal structures has become more closely associated with the prospective ventral side of the embryo during the evolution of direct development in Heliocidaris.  相似文献   

20.
The larval arms of echinoid plutei are used for locomotion and feeding. They are composed of internal calcite skeletal rods covered by an ectoderm layer bearing a ciliary band. Skeletogenesis includes an autonomous molecular differentiation program in primary mesenchyme cells (PMCs), initiated when PMCs leave the vegetal plate for the blastocoel, and a patterning of the differentiated skeletal units that requires molecular cues from the overlaying ectoderm. The arms represent a larval feature that arose in the echinoid lineage during the Paleozoic and offers a subject for the study of gene co-option in the evolution of novel larval features. We isolated new molecular markers in two closely related but differently developing species, Heliocidaris tuberculata and Heliocidaris erythrogramma. We report the expression of a larval arm-associated ectoderm gene tetraspanin, as well as two new PMC markers, advillin and carbonic anhydrase. Tetraspanin localizes to the animal half of blastula stage H. tuberculata and then undergoes a restriction into the putative oral ectoderm and future location of the postoral arms, where it continues to be expressed at the leading edge of both the postoral and anterolateral arms. In H. erythrogramma, its expression initiates in the animal half of blastulae and expands over the entire ectoderm from gastrulation onward. Advillin and carbonic anhydrase are upregulated in the PMCs postgastrulation and localized to the leading edge of the growing larval arms of H. tuberculata but do not exhibit coordinated expression in H. erythrogramma larvae. The tight spatiotemporal regulation of these genes in H. tuberculata along with other ontogenetic and phylogenetic evidence suggest that pluteus arms are novel larval organs, distinguishable from the processes of skeletogenesis per se. The dissociation of expression control in H. erythrogramma suggest that coordinate gene expression in H. tuberculata evolved as part of the evolution of pluteus arms, and is not required for larval or adult development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号