首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homology (74%) and Clostridium pasteurianum (nifH 1) showed the least homology (54%). In a comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH 1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.  相似文献   

3.
The nifH gene sequence of the nitrogen-fixing bacterium Acetobacter diazotrophicus was determined with the use of the polymerase chain reaction and universal degenerate oligonucleotide primers. The gene shows highest pair-wise similarity to the nifH gene of Azospirillum brasilense . The phylogenetic relationships of the nifH gene sequences were compared with those inferred from 16S rRNA gene sequences. Knowledge of the sequence of the nifH gene contributes to the growing database of nifH gene sequences, and will allow the detection of Acet. diazotrophicus from environmental samples with nifH gene-based primers.  相似文献   

4.
The structural gene (nifH1) encoding the nitrogenase iron protein of Clostridium pasteurianum has been cloned and sequenced. It is located on a 4-kilobase EcoRI fragment (cloned into pBR325) that also contains a portion of nifD and another nifH-like sequence (nifH2). C. pasteurianum nifH1 encodes a polypeptide (273 amino acids) identical to that of the isolated iron protein, indicating that the smaller size of the C. pasteurianum iron protein does not result from posttranslational processing. The 5' flanking region of nifH1 or nifH2 does not contain the nif promoter sequences found in several gram-negative bacteria. Instead, a sequence resembling the Escherichia coli consensus promoter (TTGACA-N17-TATAAT) is present before C. pasteurianum nifH2, and a TATAAT sequence is present before C pasteurianum nifH1. Codon usage in nifH1, nifH2, and nifD (partial) is very biased. A preference for A or U in the third position of the codons is seen. nifH2 could encode a protein of 272 amino acid residues, which differs from the iron protein (nifH1 product) in 23 amino acid residues (8%). Another nifH-like sequence (nifH3) is located on a nonadjacent EcoRI fragment and has been partially sequenced. C. pasteurianum nifH2 and nifH3 may encode proteins having several amino acids that are conserved in other proteins but not in C. pasteurianum iron protein, suggesting a possible role for the multiple nifH-like sequences of C. pasteurianum in the evolution of nifH. Among the nine sequenced iron proteins, only the C. pasteurianum protein lacks a conserved lysine residue which is near the extended C terminus of the other iron proteins. The absence of this positive charge in the C. pasteurianum iron protein might affect the cross-reactivity of the protein in heterologous systems.  相似文献   

5.
Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.  相似文献   

6.
7.
Detection and characterization of cyanobacterial nifH genes.   总被引:5,自引:2,他引:3       下载免费PDF全文
The DNA sequence of a 359-bp fragment of nifH was determined for the heterocystous strains Anabaena sp. strain CA (ATCC 33047), Nostoc muscorum UTEX 1933, a Nostoc sp., Gloeothece sp. strain ATCC 27152, Lyngbya lagerheimii UTEX 1930, and Plectonema boryanum IU 594. Results confirmed that the DNA sequence of the 359-bp segment is sufficiently variable to distinguish cyanobacterial nifH genes from other eubacterial and arachaeobacterial nifH genes, as well as to distinguish heterocystous from nonheterocystous nifH genes. Nonheterocystous cyanobacterial nifH sequences were greater than 70 and 82% identical on the DNA and amino acid levels, respectively, whereas corresponding values for heterocystous cyanobacterial nifH sequences were 84 and 91%. The amplified nifH fragments can be used as DNA probes to differentiate between species, although there was substantial cross-reactivity between the nifH amplification products of some strains. However, an oligonucleotide designed from a sequence conserved within the heterocystous cyanobacteria hybridized primarily with the amplification product from heterocystous strains. The use of oligonucleotides designed from amplified nifH sequences shows great promise for characterizing assemblages of diazotrophs.  相似文献   

8.
JC Gaby  DH Buckley 《PloS one》2012,7(7):e42149
The nifH gene is the most widely sequenced marker gene used to identify nitrogen-fixing Bacteria and Archaea. Numerous PCR primers have been designed to amplify nifH, but a comprehensive evaluation of nifH PCR primers has not been performed. We performed an in silico analysis of the specificity and coverage of 51 universal and 35 group-specific nifH primers by using an aligned database of 23,847 nifH sequences. We found that there are 15 universal nifH primers that target 90% or more of nitrogen fixers, but that there are also 23 nifH primers that target less than 50% of nifH sequences. The nifH primers we evaluated vary in their phylogenetic bias and their ability to recover sequences from commonly sampled environments. In addition, many of these primers will amplify genes that do not mediate nitrogen fixation, and thus it would be advisable for researchers to screen their sequencing results for the presence of non-target genes before analysis. Universal primers that performed well in silico were tested empirically with soil samples and with genomic DNA from a phylogenetically diverse set of nitrogen-fixing strains. This analysis will be of great utility to those engaged in molecular analysis of nifH genes from isolates and environmental samples.  相似文献   

9.
Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available for nif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified and sequenced. Nitrogenase activity was confirmed in selected type I and type II strains by acetylene reduction. Activities ranged from 0.4 to 3.3 nmol/min/mg of protein. Sequence analysis shows that the nifH sequences from the type I and type II strains cluster with nifH sequences from other gamma proteobacteria and alpha proteobacteria, respectively. The translated nifH sequences from three Methylomonas strains show high identity (95 to 99%) to several published translated environmental nifH sequences PCR amplified from rice roots and a freshwater lake. The translated nifH sequences from the type II strains show high identity (94 to 99%) to published translated nifH sequences from a variety of environments, including rice roots, a freshwater lake, an oligotrophic ocean, and forest soil. These results provide evidence for nitrogen fixation in a broad range of methanotrophs and suggest that nitrogen-fixing methanotrophs may be widespread and important in the nitrogen cycling of many environments.  相似文献   

10.
High levels of nitrogen fixation have been observed in the wastewaters of pulp and paper mills. In this study, we show that nitrogen fixation in a model pulp and paper wastewater treatment system is supported by a high density of nifH sequences that are of low diversity. Quantitative PCR revealed a ratio of nifH to 16S rDNA of 1.14 +/- 0.76 which shows that very high levels of the nifH gene were enriched to support the high rates of nitrogen fixation that occur in this wastewater. Changes in wastewater composition and dissolved oxygen levels did not affect the nifH levels and allowed stable wastewater treatment. The nifH sequences identified display a similar profile to those seen in forest soil environments where nifH sequences derived from alpha-proteobacteria and beta-proteobacteria are also prevalent.  相似文献   

11.
Sediments often exhibit low rates of nitrogen fixation, despite the presence of elevated concentrations of inorganic nitrogen. The organisms that potentially fix nitrogen in sediments have not previously been identified. Amplification of nifH genes with degenerate primers was used to assess the diversity of diazotrophs in two distinct sediment systems, anoxic muds of Chesapeake Bay and shallow surficial sediments of the Neuse River. Phylogenetic analysis revealed that sequences obtained from mid-Chesapeake Bay, which receive high organic loading and are highly reducing, clustered closely with each other and with known anaerobic microorganisms, suggesting a low abundance of aerobic or facultative diazotrophs in these sediments. Sulfate reduction dominates in the surface, but methanogenesis becomes more important with depth. A thin (<1 cm) oxidized layer is present only in the spring. No archaeal nifH sequences were obtained from Chesapeake Bay. Sequences of nifH amplified from surficial sediments of the Neuse River were distant from Chesapeake Bay sequences and included nif phylotypes related to sequences previously reported from marine mats and the Spartina rhizosphere. Differences in environmental site characteristics appear to select for different types of sediment diazotrophs, which is reflected in the phylogenetic composition of amplified nifH sequences.  相似文献   

12.
Richelia intracellularis is a symbiotic heterocystous cyanobacterium that is capable of forming associations with several genera of diatoms. nifH, 16S rRNA and hetR sequences were amplified and cloned from field populations of Richelia associated with Hemiaulus hauckii (N. Atlantic), with Rhizosolenia clevei (N. Pacific), and from a cultivated isolate of Calothrix associated with Chaetoceros from station ALOHA (N. Pacific). Sequence identity was highest (98.2%) among the 16S rRNA sequences, and more divergent for the hetR (83.8%) and nifH (91.1%) sequences. The hetR and nifH DNA and amino acid sequences obtained from the symbionts associated with the three different diatom genera diverged into three separate lineages supported by high bootstrap values. The data indicate that symbionts in the different hosts are distinct species or strains. Furthermore, three previously unidentified heterocystous-like nifH sequence groups recently reported from station ALOHA in the subtropical Pacific, het-1, het-2 and het-3, were linked to Richelia associated with R. clevei, H. hauckii and the Calothrix symbiont of Chaetoceros sp. respectively.  相似文献   

13.
14.
15.
The nucleotide sequence of the structural gene (nifH) of nitrogenase reductase (Fe protein) from R.meliloti 41 with its flanking ends is reported. The amino acid sequence of nitrogenase reductase was deduced from the DNA sequence. The predicted R.meliloti nitrogenase reductase protein consists of 297 amino acid residues, has a molecular weight of 32,740 daltons and contains 5 cysteine residues. The codon usage in the nifH gene is presented. In the 5' flanking region, sequences resembling to consensus sequences of bacterial control regions were found. Comparison of the R.meliloti nifH nucleotide and amino acid sequences with those from different nitrogen-fixing organisms showed that the amino acid sequences are more conserved than the nucleotide sequences. This structural conservation of nitrogenase reductase may be related to its function and may explain the conservation of the nifH gene during evolution.  相似文献   

16.
Using a previously developed primer system, nifH gene fragments 450 nucleotides long were amplified, cloned, and sequenced for representatives of nitrogen-fixing methanotrophic bacteria of the genera Methylococcus, Methylocystis and Methylosinus. Fragments of nifH genes were also detected and sequenced in representatives of the genera Methylomonas and Methylobacter, which were not considered diazotrophs until recently. Phylogenetic analysis revealed remoteness of nifH genes sequences of methanotroph types I and II. At the same time, close relationship was found between nifH of type I methanotrophs and representatives of gamma-proteobacteria and between nifH genes of type II methanotrophs and representatives of alpha-proteobacteria. The results obtained in this study are in good accordance with the data of phylogenetic analysis based on 16S rRNA sequence comparison with the only exception of Methylococcus capsulatus strains, whose nifH genes proved to be closely related to nifH genes of Methylocystis and Methylosinus representatives. Our findings extend the database of primary sequences of nifH genes and allow the contribution of methanotrophs to the process of nitrogen fixation to be estimated.  相似文献   

17.
18.
19.
Nine types of nitrogen-fixing bacterial strains were isolated from 3 rhizosphere soil samples taken from mangrove plants in the Dongzhaigang National Mangrove Nature Reserve of China. Most isolates belonged to Gammaproteobacteria Pseudomonas, showing that these environments constituted favorable niches for such abundant nitrogen-fixing bacteria. New members of the diazotrophs were also found. Using a soil DNA extraction and PCR-cloning-sequencing approach, 135 clones were analyzed by restriction fragment length polymorphism (RFLP) analysis, and 27 unique nifH sequence phylotypes were identified, most of which were closely related to sequences from uncultured bacteria. The diversity of nitrogen-fixing bacteria was assessed by constructing nifH phylogenetic trees from sequences of all isolates and clones in this work, together with related nifH sequences from other mangrove ecosystems in GenBank. The nifH diversity varied among soil samples, with distinct biogeochemical properties within a mangrove ecosystem. When comparing different mangrove ecosystems, the nifH gene sequences from a specific site tended to cluster as individual groups. The results provided interesting data and novel information on our understanding of diazotroph community diversity in the mangrove ecosystems.  相似文献   

20.
The diversity of nitrogenase genes in a marine cyanobacterial mat was investigated through amplification of a fragment of nifH, which encodes the Fe protein of the nitrogenase complex. The amplified nifH products were characterized by DNA sequencing and were compared with the sequences of nitrogenase genes from cultivated organisms. Phylogenetic analysis showed that similar organisms clustered together, with the exception that anaerobic bacteria clustered together, even though they represented firmicutes, (delta)-proteobacteria, and (gamma)-proteobacteria. Mat nifH sequences were most closely related to those of the anaerobes, with a few being most closely related to the cluster of (gamma)-proteobacteria containing Klebsiella and Azotobacter species. No cyanobacterial nifH sequences were found from the mat collected in November when Microcoleus chthonoplastes was the dominant cyanobacterium, but sequences closely related to the cyanobacterium Lyngbya lagerheimeii were found during summer, when a Lyngbya strain was dominant. The results indicate that there is a high diversity of heterotrophic nitrogen-fixing organisms in marine cyanobacterial mats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号