首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide (LPS) of Proteus penneri strain 31. Sugar and methylation analyses along with NMR spectroscopic studies, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C and 1H,31P HMQC experiments, demonstrated the following structure of the polysaccharide: [carbohydrate structure: see text] where FucNAc is 2-acetamido-2,6-dideoxygalactose and EtnP is 2-aminoethyl phosphate. The polysaccharide studied has the same carbohydrate backbone as the O-polysaccharide of Proteus vulgaris O19. Based on this finding and close serological relatedness of the LPS of the two strains, it is proposed to classify P. penneri 31 in Proteus serogroup O19 as an additional subgroup. In contrast, D-GlcNAc6PEtn and alpha-L-FucNAc-(1-->3)-D-GlcNAc shared with a number of other Proteus O-polysaccharides could not provide any significant cross-reactivity of the corresponding LPS with rabbit polyclonal O-antiserum against P. penneri 31.  相似文献   

2.
A high-molecular-mass O-specific polysaccharide was obtained by mild acid degradation of Proteus vulgaris O8 lipopolysaccharide followed by gel permeation chromatography. Studies of the polysaccharide by sugar and methylation analyses and 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, and H-detected 1H, 13C heteronuclear multiple-quantum coherence (HMQC) experiments, demonstrated the presence of a tetrasaccharide repeating unit having the following structure: [sequence: see text] The role of an epitope associated with the alpha-L-FucpNAc-(1-->3)-D-GlcpNAc disaccharide in serological cross-reactivity of P. vulgaris O8 is discussed.  相似文献   

3.
The O-polysaccharide of Proteus vulgaris O44, strain PrK 67/57 was studied by 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY, H-detected 1H, 13C HMQC, HMQC-TOCSY and HMBC experiments. The polysaccharide was found to contain an amide of D-glucuronic acid with L-alanine [D-GlcA6(L-Ala)], and the following structure of the linear pentasaccharide repeating unit was established: [structure: see text]. The structural data of the O-polysaccharide and the results of serological studies with P. vulgaris O44 O-antiserum showed that the strain studied is unique among Proteus bacteria, which is in agreement with its classification in a separate Proteus serogroup, O44.  相似文献   

4.
The O-chain polysaccharide of the lipopolysaccharide (LPS) of a previously nonclassified strain of Proteus mirabilis termed G1 was studied by sugar analysis and 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, rotating-frame NOE (ROESY), H-detected 1H,13C HMQC, and heteronuclear multiple-bond correlation (HMBC) experiments. The following structure of the polysaccharide was established: [carbohydrate structure: see text] where D-GalA6(L-Lys) stands for N(alpha)-(D-galacturonoyl)-L-lysine. The structure of the O-polysaccharide of P. mirabilis G1 is similar, but not identical, to that of P. mirabilis S1959 and OXK belonging to serogroup O3. Immunochemical studies with P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera revealed close LPS-based serological relatedness of P. mirabilis G1 and S1959, and therefore it was suggested to classify P. mirabilis G1 in serogroup O3 as a subgroup. P. mirabilis G1 and S1959 anti-(O-polysaccharide) sera also cross-reacted with LPS of P. mirabilis strains from two other serogroups containing D-GalA6(L-Lys) in the O-polysaccharide or in the core region.  相似文献   

5.
The O-specific polysaccharide of Proteus vulgaris O39 was found to contain a new acidic component of Proteus lipopolysaccharides, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac). The following structure of the polysaccharide was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with selective cleavage of the polysaccharide by solvolysis with anhydrous trifluoromethanesulfonic (triflic) acid: -->8)-beta-Psep5Ac7Ac-(2-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D-GlcpNAc-(1--> The structure established is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied into a separate Proteus serogroup.  相似文献   

6.
Lipopolysaccharide of Proteus penneri strain 63 was degraded by mild acid to give a high molecular mass O-specific polysaccharide that was isolated by gel-permeation chromatography. Sugar and methylation analyses and NMR spectroscopic studies, including two-dimensional 1H, 1H COSY, TOCSY rotating-frame NOE spectroscopy, H-detected 1H,13C and 1H,31P heteronuclear multiple-quantum coherence (HMQC), and 1H, 13C HMQC-TOCSY experiments, demonstrated the following structure of the polysaccharide: where FucNAc is 2-acetamido-2,6-dideoxygalactose and PEtn is 2-aminoethyl phosphate. The polysaccharide studied shares some structural features, such as the presence of D-GlcNAc6PEtn and an alpha-L-FucNAc-(1-->3)-D-GlcNAc disaccharide, with other Proteus O-specific polysaccharides. A marked cross-reactivity of P. penneri 63 O-antiserum with P. vulgaris O12 was observed and substantiated by a structural similarity of the O-specific polysaccharides of the two strains. In spite of this, the polysaccharide of P. penneri 63 has the unique structure among Proteus O-antigens, and therefore a new, separate serogroup, O68, is proposed for this strain.  相似文献   

7.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Proteus penneri 8 lipopolysaccharide and found to contain D-glucose, D-galacturonic acid, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2,6-dideoxy-L-galactose (L-FucNAc) and 2-aminoethyl phosphate (PEtn) in the ratios 2 : 1 : 1 : 1 : 1 : 1. 1H and 13C NMR spectroscopy was applied to the intact and dephosphorylated polysaccharides, and the following structure of the hexasaccharide repeating unit was established: The O-specific polysaccharide has a unique structure, and, accordingly, we propose for P. penneri 8 a new Proteus O67 serogroup, in which this strain is at present the single representative. The nature of epitopes on LPS of P. penneri 34, P. mirabilis O16, P. mirabilis O23 and P. vulgaris O22, which cross-react with O-antiserum against P. penneri 8, is discussed.  相似文献   

8.
O-Specific polysaccharide was obtained by mild acid degradation of Proteus penneri strain 16 lipopolysaccharide and found to contain D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and 3,6-dideoxy-3-[(R)-3-hydroxybutyramido]- D-galactose in the ratio of 2:1:1:1 as well as a small proportion of O-acetyl groups. On the basis of one-dimensional 1H-NMR13C-NMR and NOE spectroscopy, two-dimensional homonuclear-shift-correlated spectroscopy with one-step and two-step relayed coherence transfer and heteronuclear 1H/13C NMR shift-correlated spectroscopy, it was concluded that the O-specific polysaccharide of P. penneri strain 16 has the following structure: (formula; see text) This structure was confirmed by methylation analysis and structural analysis of a linear tetrasaccharide fragment prepared by cleavage of the polysaccharide with anhydrous hydrogen fluoride followed by conversion of the alpha-tetrosyl fluoride obtained in to the corresponding free oligosaccharide and alditol. O-Acetyl groups were tentatively located at position 3 of the glucuronic acid residue and at position 4 of the 6-substituted glucose residue, the degree of acetylation being less than 20% of the total. Cross-reactions of P. penneri strain 16 anti-(O-specific polysaccharide) antiserum with lipopolysaccharides from several other Proteus strains and the role of 3,6-dideoxy-3-(R)-3-hydroxybutyramido-D-galactose in the serological specificity of P. penneri strain 16 are discussed.  相似文献   

9.
An acidic branched O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide (LPS) of Proteus genomospecies 4 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY and H-detected 1H, 13C HSQC experiments. The following structure of the pentasaccharide repeating unit of the O-polysaccharide was established, which is unique among Proteus polysaccharide structures: [structure: see text] where Qui3NAc stands for 3-acetamido-3,6-dideoxyglucose. Based on the O-polysaccharide structure and serological data, we propose classifying Proteus genomospecies 4 into a new, separate Proteus serogroup, O56. A weak cross-reactivity of Proteus genomospecies 4 antiserum with LPS of Providencia stuartii O18 and Proteus vulgaris OX2 was observed and is discussed in view of a similarity of the O-polysaccharide structures. Structural and serological investigations showed that Proteus genomospecies 5 and 6 should be classified into the existing Proteus serogroups O8 and O69, respectively.  相似文献   

10.
The acidic O-specific polysaccharide chain (O-antigen) of the lipopolysaccharide (LPS) of Proteus mirabilis strain D52 was studied using chemical analyses along with 1H-NMR and 13C-NMR spectroscopy, including 2D COSY, TOCSY, ROESY, H-detected 1H,13C and 1H,31P HMQC experiments. The polysaccharide was found to contain D-ribitol 5-phosphate (D-Rib-ol-5-P) and ethanolamine phosphate (Etn-P) and has the following structure: D-Rib-ol-5-P (3) approximately 75% EtnP(6)-->2)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-GlcpNAc-(1-->). This structure is identical with that of the O-polysaccharide of P. mirabilis O33 strain 59/57, and, hence, P. mirabilis D52 belongs to the same Proteus serogroup O33. Serological studies with O-antiserum against P. mirabilis D52 confirmed this but showed that the LPS species of P. mirabilis 59/57 and D52 are not identical, having different epitopes in the core region. A serological cross-reactivity of P. mirabilis D52 O-antiserum was observed with LPS of two other Proteus strains, P. mirabilis O16 and P. penneri 103, which have structurally different O-polysaccharides. The role of charged groups, Rib-ol-5-P and Etn-P in the immunospecificity is discussed.  相似文献   

11.
An O-polysaccharide was isolated by mild acid hydrolysis from the lipopolysaccharide of Proteus mirabilis O40 and studied by NMR spectroscopy, including 2D 1H, 1H COSY, TOCSY, ROESY, and 1H, 13C HMQC experiments, along with chemical methods. The polysaccharide was found to contain an ether of GlcNAc with lactic acid and glycerol phosphate in the main chain and to have the following structure: --> 3)-beta-D-GlcpNAc4(R-Lac)-(1 --> 3)-alpha-D-Galp-(1 --> 3)-D-Gro-1-P-(O --> 3)-beta-D-GlcpNAc-(1 --> where D-GlcpNAc4(R-Lac) stands for 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose. This structure is unique among the known structures of the Proteus O-polysaccharides, which is in agreement with the classification of the strain studied into a separate O-serogroup. A serological relatedness of P. mirabilis O40 with some other Proteus strains was revealed and discussed in view of the O-polysaccharide structures.  相似文献   

12.
The O-specific polysaccharide of the lipopolysaccharide of Proteus penneri strain 103 was studied using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,(13)C HMQC, 1H, 31P HMQC, and HMBC experiments. It was found that the polysaccharide is built up of oligosaccharide-ribitol phosphate repeating units and thus resembles ribitol teichoic acids of Gram-positive bacteria. The following structure of the polysaccharide was established:where Etn and Rib-ol are ethanolamine and ribitol, respectively. This structure is unique among the known structures of Proteus O-antigens and, therefore, we propose classification of the strain studied into a new Proteus serogroup, O73. The molecular basis for cross-reactivity between O-antiserum against P. penneri 103 and O-antigens of P. mirabilis O33 and D52 is discussed.  相似文献   

13.
The structure of the O-polysaccharide of Proteus mirabilis CCUG 10705 (OF) was determined by chemical analyses along with one- and two-dimensional (1)H and (13)C NMR spectroscopy. The polysaccharide was found to contain an amide of D-galacturonic acid with L-alanine and based on the uniqueness of the O-polysaccharide structure and serological data, it was suggested to classify P. mirabilis OF into a new separate Proteus serogroup, O74. A weak cross-reactivity of P. mirabilis OF and P. mirabilis O5 was observed and accounted for by a similarity of their O-repeating units. The following structure of the polysaccharide of P. mirabilis OF was established: [chemical structure: see text]  相似文献   

14.
A high-molecular-mass O-specific polysaccharide was obtained by mild acid degradation of Proteus vulgaris O4 lipopolysaccharide followed by GPC. The polysaccharide was studied by chemical methods along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, H-detected 1H,13C HMQC, and 1H,13C HMBC experiments. Solvolysis of the polysaccharide with trifluoromethanesulfonic (triflic) acid resulted in a GlcpA-(1 --> 3)-GlcNAc disaccharide and a novel amino sugar derivative, 4,6-dideoxy-4-[N-[(R)-3-hydroxybutyryl]-L-alanyl]amino-D-glucose [Qui4N(HbAla)]. On the basis of the data obtained, the following structure of the tetrasaccharide repeating unit of the O-specific polysaccharide was established: --> 4)-beta-D-GlcpA-(1 --> 3)-beta-D-GlcpNAc-(1 --> 2)-beta-D-Quip4N(HbAla)-(1 --> 3)-alpha-D-Galp-(1 -->. This structure is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied in a separate Proteus serogroup.  相似文献   

15.
O-specific polysaccharides (O-antigens) of the lipopolysaccharides (LPS) of Proteus penneri strains 1 and 4 were studied using sugar analysis, (1)H and (13)C NMR spectroscopy, including 2D COSY, H-detected (1)H,(13)C HMQC, and rotating-frame NOE spectroscopy (ROESY). The following structures of the tetrasaccharide (strain 1) and pentasaccharide (strain 4) repeating units of the polysaccharides were established: [reaction: see text]. In the polysaccharide of P. penneri strain 4, glycosylation with the lateral Glc residue (75%) and O-acetylation of the lateral GalNAc residue (55%) are nonstoichiometric. This polysaccharide contains also other, minor O-acetyl groups, whose positions were not determined. The structural similarity of the O-specific polysaccharides was consistent with the close serological relatedness of the LPS, which was demonstrated by immunochemical studies with O-antisera against P. penneri 1 and 4. Based on these data, it was proposed to classify P. penneri strains 1 and 4 into a new Proteus serogroup, O72, as two subgroups, O72a and O72a,b, respectively. Serological cross-reactivity of P. penneri 1 O-antiserum with the LPS of P. penneri 40 and 41 was substantiated by the presence of an epitope(s) on the LPS core region shared by all P. penneri strains studied.  相似文献   

16.
A neutral O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus mirabilis OC (CCUG 10702) and studied by sugar and methylation analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text]. Based on the unique structure of the O-polysaccharide and serological data, we propose classifying P. mirabilis OC (CCUG 10702) into a new separate Proteus serogroup O75. A weak cross-reaction of O-antiserum against P. mirabilis OC with the lipopolysaccharide of P. mirabilis O49 was accounted for by a similarity in the O-polysaccharide structures.  相似文献   

17.
O-Polysaccharides were obtained from the lipopolysaccharides of Proteus mirabilis CCUG 10704 (OE) and Proteus vulgaris TG 103 and studied by chemical analyses and one- and two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy, including rotating-frame nuclear Overhauser effect spectroscopy, H-detected (1)H,(13)C heteronuclear single-quantum spectroscopy and (1)H,(31)P heteronuclear multiple-quantum spectroscopy experiments. The Proteus mirabilis OE polysaccharide was found to have a trisaccharide repeating unit with a lateral glycerol phosphate group. The Proteus vulgaris TG 103 produces a similar O-polysaccharide, which differs in incomplete substitution with glycerol phosphate (c. 50% of the stoichiometric amount) and the presence of an O-acetyl group at position 6 of the 2-acetamido-2-deoxygalactose (GalNAc) residue. These structures are unique among the known bacterial polysaccharide structures. Based on the structural and serological data of the lipopolysaccharides, it is proposed to classify both strains studied into a new Proteus serogroup, O54, as two subgroups, O54a,54b and O54a,54c. The serological relatedness of the Proteus O54 and some other Proteus lipopolysaccharides is discussed.  相似文献   

18.
An unusual ribitol teichoic acid-like O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide from a previously non-classified Proteus vulgaris strain TG 276-1. Structural studies using chemical analyses and 2D (1)H and (13)C NMR spectroscopy showed that the polysaccharide is a zwitterionic polymer with a repeating unit containing 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (D-FucNAc4N) and two D-ribitol phosphate (D-Rib-ol-5-P) residues and having the following structure:[formula: see text] where the non-glycosylated ribitol residue is randomly mono-O-acetylated. Based on the unique O-polysaccharide structure and the finding that the strain studied is serologically separate among Proteus bacteria, we propose to classify P. vulgaris strain TG 276-1 into a new Proteus serogroup, O53.  相似文献   

19.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

20.
An acidic O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Proteus mirabilis CCUG 10701 (OB) and studied by chemical analyses and (1)H and (13)C NMR spectroscopy. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: --> 3)-beta-D-GlcpNAc6Ac-(1 --> 2)-beta-D-GalpA4Ac-(1--> 3)-alpha-D-GalpNAc-(1 --> 4)-alpha-D-GalpA-(1 -->, where the degree of O-acetylation at position 6 of GlcNAc is approximately 50% and at position 4 of beta-GalA approximately 60%. Based on the unique structure of the O-polysaccharide and serological data, it is proposed to classify P. mirabilis CCUG 10701 (OB) into a new Proteus serogroup, O74.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号