首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of caffeine on UV-irradiated Chinese hamster cells in vitro was studied on the cellular and molecular levels. Caffeine (1 mM) was shown to decrease the colony-forming ability and the frequencies of spontaneous and UV-induced mutations in Chinese hamster cells. The effect of caffeine in reducing the frequency of UV-induced mutations was demonstrated only if caffeine was present in the culture medium during the first post-irradiation cell division. Using alkaline sucrose gradient centrifugation, both parental and newly synthesized DNA in UV-irradiated and unirradiated cells were studied in the presence and absence of caffeine. Caffeine affected the sedimentation profile of DNA synthesized in UV-irradiated cells but not in unirradiated cells. Caffeine had no apparent effect on the incorporation of [3H]-thymidine into DNA of control or UV-irradiated cells, nor on the small amount of excision of UV-induced pyrimidine dimers. These results may be interpreted by a hypothesis that caffeine inhibits a certain S-phase specific, post-replication, dark-repair mechanism. The hamster and perhaps other rodent cells exposed to low doses of UV are capable of DNA replication, by-passing the non-excised pyrimidine dimers. This postulated repair process probably involves de novo DNA synthesis to seal the gaps in the nascent strand. This repair may be also responsible for the enzymatic production of mutations.  相似文献   

2.
UV mutagenesis has been compared in the E. coli B/r trp? WWP-2 Hcr+ and in a mutant (StmR 28) resistant to 100 μg streptomycin/ml. In the StmR strain it is possible to score UV-induced Trp+ reversions, and survival, on media supplemented with, or lacking, streptomycin. Such experiments revealed a marked enhancement of mutagenic effect of UV by streptomycin. On analysis it was shown that in the StmR strain a fraction of UV-induced Trp+ reversions, dut to ochre suppressor, achieve full phenotypic expression only in the presence of streptomycin. Thus an inhibitory effect of the StmR 28 mutation on the activity of some ochre suppressors is relieved by streptomycin.  相似文献   

3.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

4.
The frequency of ultraviolet (UV)-induced mutations to streptomycin resistance dropped rapidly when starved Escherichia coli strains WP-2 B/r and B/r T- were incubated on phosphate-buffered agar (PBA), but was reduced only slightly in a WP-2 hcr- mutant. During postirradiation, incubation viability remained approximately constant. Cells given an optimal recovery treatment with photo-reactivating light showed no further recovery if subsequently incubated on PBA. At least 70% of the mutations induced to streptomycin resistance by UV could be repaired. The loss of potential streptomycin-resistant mutants was markedly reduced in strain B/r T- when 5 mug of acriflavin or 700 mug of caffeine per ml was added to PBA. The excision of UV-induced thymine-containing dimers from E. coli tb/r T- was investigated. Dimer excision progressed more slowly when the cells were incubated on PBA containing acriflavin or caffeine. There was no congruity between the kinetics of dimer excision and the kinetics of mutant loss. Our results indicate that removal of potential streptomycin-resistant mutants is considerably faster than the excision of pyrimidine dimers.  相似文献   

5.
Tardigrades inhabiting terrestrial environments exhibit extraordinary resistance to ionizing radiation and UV radiation although little is known about the mechanisms underlying the resistance. We found that the terrestrial tardigrade Ramazzottius varieornatus is able to tolerate massive doses of UVC irradiation by both being protected from forming UVC-induced thymine dimers in DNA in a desiccated, anhydrobiotic state as well as repairing the dimers that do form in the hydrated animals. In R. varieornatus accumulation of thymine dimers in DNA induced by irradiation with 2.5 kJ/m2 of UVC radiation disappeared 18 h after the exposure when the animals were exposed to fluorescent light but not in the dark. Much higher UV radiation tolerance was observed in desiccated anhydrobiotic R. varieornatus compared to hydrated specimens of this species. On the other hand, the freshwater tardigrade species Hypsibius dujardini that was used as control, showed much weaker tolerance to UVC radiation than R. varieornatus, and it did not contain a putative phrA gene sequence. The anhydrobiotes of R. varieornatus accumulated much less UVC-induced thymine dimers in DNA than hydrated one. It suggests that anhydrobiosis efficiently avoids DNA damage accumulation in R. varieornatus and confers better UV radiation tolerance on this species. Thus we propose that UV radiation tolerance in tardigrades is due to the both high capacities of DNA damage repair and DNA protection, a two-pronged survival strategy.  相似文献   

6.
《Mutation research》1987,181(1):9-16
In this review the authors present only their own results. They include the determination of the duration of the different stages of the cell cylce in UV-irradiated barley cells, the effect of different UV doses on the frequency of chromosome aberrations in barley, the increase in UV-induced chromosome aberration frequency induced in barley by caffeine and the effect of UV doses on the induction of pyrimidine dimers and sites sensitive to UV-endonuclease action (ESS) in barley cells and Nicotina tabacum protoplasts. In addition, the excision of pyrimidine dimers and ESS after irradiation with various doses of UV, unscheduled DNA synthesis in N. tabacum protoplasts and the correlation between the induction of pyrimidine dimers in DNA and the frequency of chromosome aberrations are reported. Data demonstrating that photoreactivation decrease the number of DNA lesions and chromosome aberrations induced by UV are also presented.  相似文献   

7.
UV-induction of thymine dimers in cellular DNA and their excision during different phases of the cell cycle of HeLa S3 cells were studied. Induction of thymine dimers was higher in the mitotic phase and the middle of the S phase than in the G1 phase and from the late S phase to the early G2 phase which are rather insensitive to UV. However, there is no significant difference in excision rate of UV-induced thymine dimers from the irradiated cells through the cell cycle. These findings indicate that the cyclic variation of UV-survivals during the cell cycle may be due to differences in the amount of thymine dimers in cellular DNA induced by UV-irradiation.  相似文献   

8.
Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH.  相似文献   

9.
This study was aimed at identifying the roles of caffeine and acriflavine, two repair inhibitors, on UV sensitivity of iron-oxidizing Thiobacillus ferrooxidans ATCC 13728. The UV-dose response survival curve was inflected in nature, suggesting the population heterogeneity of the isolate. Caffeine and acriflavine potentiated the UV-induced killing of the organism. With the increase in concentrations of these compounds, the extent of survival decreased. Similarly, the inhibitory effects of caffeine and acriflavine increased with the increase in dose of UV-irradiation. The cells irradiated with 10 s (equivalent to 5.6 × 10−5 J/m2/s) of UV-exposure tended to become resistant to the inhibitory effects of caffeine and acriflavine, as evidenced by the time course study of recovery. The cells appear to stage a dramatic recovery from UV damage in the presence of caffeine (3.0 mg/ml) and acriflavine (20 μg/ml) over a period of 25–30h and 35–40h respectively, when grown in the presence of energy sources. Received: 4 December 2000/Accepted: 10 January 2001  相似文献   

10.
Strains of Escherichia coli that carry the mutation uvrA6 show no measurable excision of pyrimidine dimers and are easily killed by ultraviolet (UV) light, whereas strains that carry recA13 are defective in genetic recombination and are also UV-sensitive. An Hfr strain carrying uvrA6 was crossed with an F strain carrying recA13. Among the recombinants identified, one carrying uvrA recA proved to be of exceptional sensitivity to UV light. It is estimated from the UV dose (0.2 erg/mm2 at 253.7 nm) required to reduce the number of colony-forming cells by one natural logarithm that about 1.3 pyrimidine dimers were formed in a genome of 5 × 106 base pairs for each lethal event. This double mutant is 40 times more UV-sensitive than the excision-defective strain carrying uvrA6. The replication of one pyrimidine dimer is generally a lethal event in strains carrying recA13. Spontaneous breakdown and UV-induced breakdown of the deoxyribonucleic acid (DNA) of cells of the various genotypes were estimated by growing the cells in medium containing 3H-thymidine and measuring both acid-precipitable and acid-soluble radioactivity. The UV-induced degradation in strains with recA13 did not require the uvr+ genes and hence appears to depend upon a mechanism other than dimer excision. The greater level of survival after irradiation in Rec+ as compared to Rec bacteria may be due to a recovery mechanism involving the reconstruction of the bacterial chromosome through genetic exchanges which occur between the newly replicated sister duplexes and which effectively circumvent the damaged bases remaining in the DNA.  相似文献   

11.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ·cm−2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ·cm−2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ·cm−2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ·cm−2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

12.
The ultraviolet (UV) photochemistry and photobiology of spores and vegetative cells of Bacillus megaterium have been studied. The response of vegetative cells of B. megaterium appears qualitatively similar to those of Escherichia coli, Micrococcus radiodurans, and Bacillus subtilis with respect to photoproduct formation and repair mechanisms. UV irradiation, however, does not produce cyclobutane-type thymine dimers in the DNA of spores, although other thymine photo-products are produced. The photoproducts do not disappear after photoreactivation, but they are eliminated from the DNA by a dark-repair mechanism different from that found for dimers in vegetative cells. Irradiations performed at three wavelengths produce the same amounts of spore photoproduct and give the same survival curves. Variation of the sporulation medium before irradiation results in comparable alterations in the rate of spore photoproduct production and in survival.  相似文献   

13.
Summary The role of pyrimidine dimers in mutagenesis by ultraviolet light was examined by measuring the UV-induced reversion of six different bacteriophage M13 amber mutants for which the neighboring DNA sequences are known. The mutational response at amber (TAG) codons preceded by a guanine or adenine (where no pyrimidine dimer can be formed) were compared with those preceded by thymine or cytosine (where dimer formation is possible). Equivalent levels of UV-induced mutagenesis were observed at both kinds of sites. This observation demonstrates that there is no requirement for a pyrimidine dimer directly at the site of UV-induced mutation in this single-stranded DNA phage. UV irradiation of the phage was also performed in the presence of Ag+ ions, which specifically sensitize the DNA to dimer formation. The two methods of irradiation, when compared at equal survival levels (and presumably equal dimer frequencies), produced equivalent frequencies of reversion of the amber phage. We believe these results indicate that while the presence of pyrimidine dimers may be a prerequisite for UV mutagenesis, the actual mutagenic event can occur at a site some distance removed from a dimer.  相似文献   

14.
Dependence of the broth effeot and the phenomenon of mutation frequency decline on dose of the applied UV radiation was investigated in the strainEscherichia coli B/r Hcr+ thy trp. Reversions to Trp+ were followed. The degree of the broth effect and the mutation frequency decline is minimal within the range of UV doses corresponding to a survival of cells lower than 10-1. In connection with the two effects, excision of thymine dimers, initiation of synthesis, synthesis and degradation of DNA were also investigated. It was found that stimulation or inhibition of an inaccurate postreplication repair mechanism, rather than inhibition or stimulation of excision of thymine dimers, are responsible for the broth effect and the mutation frequency decline, respectively.  相似文献   

15.
To evaluate the effectiveness of UV irradiation in inactivating Cryptosporidium parvum oocysts, the animal infectivities and excystation abilities of oocysts that had been exposed to various UV doses were determined. Infectivity decreased exponentially as the UV dose increased, and the required dose for a 2-log10 reduction in infectivity (99% inactivation) was approximately 1.0 mWs/cm2 at 20°C. However, C. parvum oocysts exhibited high resistance to UV irradiation, requiring an extremely high dose of 230 mWs/cm2 for a 2-log10 reduction in excystation, which was used to assess viability. Moreover, the excystation ability exhibited only slight decreases at UV doses below 100 mWs/cm2. Thus, UV treatment resulted in oocysts that were able to excyst but not infect. The effects of temperature and UV intensity on the UV dose requirement were also studied. The results showed that for every 10°C reduction in water temperature, the increase in the UV irradiation dose required for a 2-log10 reduction in infectivity was only 7%, and for every 10-fold increase in intensity, the dose increase was only 8%. In addition, the potential of oocysts to recover infectivity and to repair UV-induced injury (pyrimidine dimers) in DNA by photoreactivation and dark repair was investigated. There was no recovery in infectivity following treatment by fluorescent-light irradiation or storage in darkness. In contrast, UV-induced pyrimidine dimers in the DNA were apparently repaired by both photoreactivation and dark repair, as determined by endonuclease-sensitive site assay. However, the recovery rate was different in each process. Given these results, the effects of UV irradiation on C. parvum oocysts as determined by animal infectivity can conclusively be considered irreversible.  相似文献   

16.
Caffeine at concentrations of 0.5 × 10–2 M or higher inhibited cell replication and induced gene segregations in Candida albicans cultured on defined complete medium. Both responses increased incrementally with increasing caffeine concentrations, and were more severe during incubation at 37 °C than 25 °C; at 37 °C, caffeine levels above 1.5 × 10–2 M caused cellular inactivation. Caffeine effects occurred only under conditions permitting cell growth, and their magnitudes were greater for unbudded than budding cells, were influenced by cellular genetic backgrounds, and were unaffected by the presence of adenine in the medium. Evaluations of segregations for recessive auxotrophic markers of a four member linkage group carried heterozygously in a cis arrangement in treated cells established that induced segregants arise through either reciprocal or nonreciprocal recombinations. The frequency distributions of classes of reciprocal and nonreciprocal recombinants for these markers conformed with those previously obtained following induction by ultraviolet radiation, indicating that the probabilities of recombinational events within the chromosomal regions defined by the markers are not biased by the differences in kinds of initial DNA lesions caused by the two recombinagens. A panel of four protoplast fusion hybrids considered deficient for DNA repair because of enhanced susceptibilities to UV induced cellular inactivation and mitotic recombination exhibited corresponding increased sensitivities to caffeine, signifying that DNA damage induced by caffeine is subject to repair. Caffeine did not affect behavior of a variant strain exhibiting high frequency phenotypic switching between minute smooth and large rough colonial forms, and no evidence for mutagenicity of the drug was obtained with systems for detection of forward or reverse mutations. The mechanism of caffeine's recombinagenicity, and the implications of that property for genetic studies of C. albicans are discussed.  相似文献   

17.
Summary The addition of caffeine or theophylline to the growth medium of irradiatedE. coli B/rtry resulted in a 10-fold or greater increase in the frequency oftry + mutants. These observations extend those ofWitkin (1958). Caffeine produced a slight reduction in the rate of RNA and protein synthesis, and a somewhat greater but temporary reduction in the rate of DNA synthesis. The analogue must be added immediately after UV-irradiation to produce its optimal effect, and the ability of an irradiated culture to respond to caffeine was lost completely after 20 min incubation in broth. Normal purine ribosides did not compete with caffeine. The optimal exposure time to caffeine was correlated with the time of DNA doubling, but marked increases of mutation frequency resulted when caffeine was present for 30 min in the absence of DNA synthesis. Incubation in caffeine before irradiation had no effect. Caffeine also reduced mutation frequency decline caused by incubation of irradiated bacteria in chloramphenicol. It is suggested that caffeine interfers with a dark repair enzyme system which removes a UV photoproduct (s) whose presence during DNA synthesis leads to mutation.With 4 Figures in the TextDedicated to ProfessorL. C. Dunn.Research supported by Grant NSF-G 14 044 from the National Science Foundation.  相似文献   

18.
Summary We investigated the influence of aminoacidless treatments applied prior and after UV irradiation on survival, dimer excision, postirradiation DNA degradation, DNA synthesis and sedimentation profiles of parental DNA ofE. coli B/r Hcr+ cells. In dependence on the treatment applied, the fluence 50 J/m2 yielded distinctly different fractions of survivors within 0,03–85%. In all cases dimers were completely excised. The rate of DNA degradation was similar during a 30–40 min period after UV during which the bulk of dimers was excised. Degradation ceased, however, earlier in the prestarved cells than in exponentially growing ones; it was prolonged by aminoacidless postincubation. Sedimentation profiles of parental DNA did not differ during the whole period of dimer excision. In cells DNA synthesis was not restored for several hours after addition of amino acids. In cells addition of amino acids resulted in a fast resumption of DNA synthesis. We conclude that removal of dimers and repair of gaps were similar in all cases. We believe that aminoacidless treatments influence production and repair of damage to the sites of DNA replication. The treatment appears to prevent this damage when applied before UV irradiation, but interferes with its restoration when applied after UV irradiation. Consequently, the former treatment increases survival of cells while the latter produces an opposite effects.  相似文献   

19.
Cu(II) affects the yield of cyclobutyl dimers induced in DNA by 254 nm radiation. The effects are a function of r, the ratio of Cu(II) to DNA phosphate, and of the ultraviolet (UV) fluence; they seem to reflect two types of copper complexes with DNA. The first probably involves “exterior” binding to the bases of native DNA and increases [unk]TT formation (without affecting [unk]UT yield) by raising the energy levels of bases other than thymine. The second seems to occur only at high ratios (rs) and only after the structure has been opened locally by UV radiation; it involves “interior” binding of Cu(II) to the bases. This complex tends to decrease dimer yield by holding the bases apart and/or by lowering the energy levels of bases other than thymine. These results illustrate the potential use of DNA photoproducts and ligands to probe the structure and interactions of DNA in vitro and perhaps also in vivo.  相似文献   

20.
The effects of UV irradiation on DNA metabolism during meiosis have been examined in wild-type (RAD+) and mitotically defined excision-defective (rad1-1) strains of Saccharomyces cerevisiae that exhibit high levels of sporulation. The rad1-1 gene product is not required for normal meiosis: DNA synthesis, RNA synthesis, size of parental and newly synthesized DNA and sporulation are comparable in RAD+ and rad1-1 strains. Cells were UV irradiated at the beginning of meiosis, and the fate of UV-induced pyrimidine dimers as well as changes in DNA and DNA synthesis were followed during meiosis. Excision repair of pyrimidine dimers can occur during meiosis and the RAD1 gene product is required; alternate excision pathways do not exist. Although the rate of elongation is decreased, the presence of pyrimidine dimers during meiosis in the rad1-1 strain does not block meiotic DNA synthesis suggesting a bypass mechanism. The final size of DNA is about five times the distance between pyrimidine dimers after exposure to 4 J/m2. Since pyrimidine dimers induced in parental strands of rad1-1 prior to premeiotic DNA synthesis do not become associated with newly synthesized DNA, the mechanism for replicational bypass does not appear to involve a recombinational process. The absence of such association indicates that normal meiotic recombination is also suppressed by UV-induced damage in DNA; this result at the molecular level is supported by observations at the genetic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号