首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Open-ended, inquiry-based multiweek laboratory exercises are the key elements to increasing students' understanding and retention of the major biological concepts. Including original research into undergraduate teaching laboratories has also been shown to motivate students and improve their learning. Here, we present a series of original laboratory exercises on fine mapping novel maize mutations producing interesting phenotypes. In this 4-week lab series, students get involved in the whole process of identifying novel genes controlling specific phenotypes, from phenotype characterization and choosing appropriate molecular markers to calculating the genetic distance between the mutation and the marker and finding possible candidate genes using a complete genome sequence. We chose to use maize mutant lines produced by TILLING project. These lines have been partially mapped to a chromosomal bin by a high-throughput bulk segregant analysis; however, the exact map positions for these mutations have never been determined. Mapping these novel maize mutations provides students with the opportunity to conduct original research as a part of their classroom experience and to contribute to the field of maize genetics. The laboratory series was well received by the students, and the assessment results demonstrated an improvement of student learning of gene mapping, molecular marker analysis, and positional cloning concepts.  相似文献   

3.
The past decade has seen the completion of numerous whole-genome sequencing projects, began with bacterial genomes and continued with eukaryotic species from different phyla: fungi, plants and animals. Besides, more biological information are produced and are shared thanks to information exchange systems, and more biological concepts, as well as more bioinformatics tools, are available. In this article, we will describe how the evolutionary biology concepts, as well as computer science, are useful for a better understanding of biology in general and genome annotation in particular. The genome annotation process consists of taking the raw DNA produced, for example, by the genome sequencing projects, adding the layers of analysis and interpretation necessary to extract its biological significance and placing it in the context of our understanding of biological processes. Genome annotation is a multistep process falling into two broad categories: structural and functional annotation.  相似文献   

4.
5.
6.
7.
COMBREX (computational bridges to experimentation) is a project to engage the biological community in providing better functional annotation of genomes. In essence, the project involves the generation by computational biologists of a database of predicted functions for genes in bacterial genomes. Those genes for which no functional assignments have been proven experimentally are then open for bids by biochemists to test the predicted functions. High-priority genes are those for which no previous functional assignment has been made as well as those where uncharacterized examples are present in many genomes. A pilot project is running that focuses on bacterial and archaeal genomes.  相似文献   

8.
This paper is based upon experiments developed as part of a Directed Research course designed to provide undergraduate biology students experience in the principles and processes of the scientific method used in biological research. The project involved the evaluation of herbal remedies used in many parts of the world in the treatment of diseases producing diarrhea as a major symptom. Methods used for testing the efficacy of these remedies vary greatly, and this provides an opportunity for inquiry in the classroom. The nematode Caenorhabditis elegans is used as the test organism. Survival of this worm is easily determined by assessing motility using a dissection microscope. The influence of two solvents commonly used for testing these treatments, M9 salt solution and purified water, on survival of worms is examined. The results were important to a graduate project evaluating the influence of these solvents on bioassay sensitivity testing partially purified extracts of the West African plant, Anogeissus leiocarpus, used for treatment of diarrhea. Directed research projects allow undergraduate biology students to become engaged in science and develop a deeper understanding of science process skills. The experiments can be extended to examine other variables as directed research projects or modified to use as experimental case examples as part of a laboratory exercise.  相似文献   

9.
10.
We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, represents our third build of the pseudomolecules and is composed of 98% finished sequence. Genes were identified using a series of computational methods developed for Arabidopsis (Arabidopsis thaliana) that were modified for use with the rice genome. In release 3 of our annotation, we identified 57,915 genes, of which 14,196 are related to transposable elements. Of these 43,719 non-transposable element-related genes, 18,545 (42.4%) were annotated with a putative function, 5,777 (13.2%) were annotated as encoding an expressed protein with no known function, and the remaining 19,397 (44.4%) were annotated as encoding a hypothetical protein. Multiple splice forms (5,873) were detected for 2,538 genes, resulting in a total of 61,250 gene models in the rice genome. We incorporated experimental evidence into 18,252 gene models to improve the quality of the structural annotation. A series of functional data types has been annotated for the rice genome that includes alignment with genetic markers, assignment of gene ontologies, identification of flanking sequence tags, alignment with homologs from related species, and syntenic mapping with other cereal species. All structural and functional annotation data are available through interactive search and display windows as well as through download of flat files. To integrate the data with other genome projects, the annotation data are available through a Distributed Annotation System and a Genome Browser. All data can be obtained through the project Web pages at http://rice.tigr.org.  相似文献   

11.
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interaction data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automatically selects the most appropriate functional classes as specific as possible during the learning process, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.  相似文献   

12.
To assess the functional capacities of microbial communities, including those inhabiting the human body, shotgun metagenomic reads are often aligned to a database of known genes. Such homology-based annotation practices critically rely on the assumption that short reads can map to orthologous genes of similar function. This assumption, however, and the various factors that impact short read annotation, have not been systematically evaluated. To address this challenge, we generated an extremely large database of simulated reads (totaling 15.9 Gb), spanning over 500,000 microbial genes and 170 curated genomes and including, for many genomes, every possible read of a given length. We annotated each read using common metagenomic protocols, fully characterizing the effect of read length, sequencing error, phylogeny, database coverage, and mapping parameters. We additionally rigorously quantified gene-, genome-, and protocol-specific annotation biases. Overall, our findings provide a first comprehensive evaluation of the capabilities and limitations of functional metagenomic annotation, providing crucial goal-specific best-practice guidelines to inform future metagenomic research.  相似文献   

13.
动物生物学是揭示动物生命活动规律的科学。作为生命科学专业本科学生最早接触到的主干课程之一,动物生物学的教学对于学生了解生物学的基本概念和基础知识、构建生命科学的知识体系和思维方式、培养和巩固专业兴趣十分重要。系统回顾和总结了动物生物学研究对生命学科发展的贡献,阐明了动物生物学教学对生命科学人才培养与学科建设的作用,引起广大的生物学教学工作者和管理者对动物生物学教学的重视,促进传统重要基础课程的建设与发展。  相似文献   

14.
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.  相似文献   

15.
Small auxin-up RNAs(SAURs)are the early auxin-responsive genes represented by a large multigene family in plants.Here,we identified 79 SAUR gene family members from maize(Zea mays subsp.mays)by a reiterative database search and manual annotation.Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis,rice,sorghum,and maize had divided into 16 groups.These genes were non-randomly distributed across the maize chromosomes,and segmental duplication and tandem duplication contributed to the expansion of the maize SAUR gene family.Synteny analysis established orthology relationships and functional linkages between SAUR genes in maize and sorghum genomes.We also found that the auxin-responsive elements were conserved in the upstream sequences of maize SAUR members.Selection analyses identified some significant site-specific constraints acted on most SAUR paralogs.Expression profiles based on microarray data have provided insights into the possible functional divergence among members of the SAUR gene family.Quantitative real-time PCR analysis indicated that some of the 10 randomly selected ZmSAUR genes could be induced at least in maize shoot or root tissue tested.The results reveal a comprehensive overview of the maize SAUR gene family and may pave the way for deciphering their function during plant development.  相似文献   

16.
17.
Small auxin-up RNAs (.SAURs) are the early auxin- responsive genes represented by a large multigene family in plants. Here, we identified 79 SAUR gene family members from maize (Zea mays subsp, mays) by a reiterative database search and manual annotation. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, and maize had divided into 16 groups. These genes were non-randomly distributed across the maize chromosomes, and segmental duplication and tandem duplication contributed to the expansion of the maize .SAUR gene family. Synteny analysis established ortholos~J relationships and functional linkages between SAUR genes in maize and sorghum genomes. We also found that the auxin-responsive elements were conserved in the upstream sequences of maize SAUR members. Selection analyses identified some significant site-specific constraints acted on most SAUR paralogs. Expression profiles based on microarray data have provided insights into the possible functional divergence among members of the .SAUR gene family. Quantitative real-time PCR analysis indicated that some of the 10 randomly selected ZmSAUR genes could be induced at least in maize shoot or root tissue tested. The results reveal a comprehensive overview of the maize .SAUR gene family and may pave the way for deciphering their function during pJant development.  相似文献   

18.
19.
The apoptosis database is a public resource for researchers and students interested in the molecular biology of apoptosis. The resource provides functional annotation, literature references, diagrams/images, and alternative nomenclatures on a set of proteins having 'apoptotic domains'. These are the distinctive domains that are often, if not exclusively, found in proteins involved in apoptosis. The initial choice of proteins to be included is defined by apoptosis experts and bioinformatics tools. Users can browse through the web accessible lists of domains, proteins containing these domains and their associated homologs. The database can also be searched by sequence homology using basic local alignment search tool, text word matches of the annotation, and identifiers for specific records. The resource is available at http://www.apoptosis-db.org and is updated on a regular basis.  相似文献   

20.
As more and more complete bacterial genome sequences become available, the genome annotation of previously sequenced genomes may become quickly outdated. This is primarily due to the discovery and functional characterization of new genes. We have reannotated the recently published genome of Shewanella oneidensis with the following results: 51 new genes have been identified, and functional annotation has been added to the 97 genes, including 15 new and 82 existing ones with previously unassigned function. The identification of new genes was achieved by predicting the protein coding regions using the HMM-based program GeneMark.hmm. Subsequent comparison of the predicted gene products to the non-redundant protein database using BLAST and the COG (Clusters of Orthologous Groups) database using COGNITOR provided for the functional annotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号