首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Insulin receptor substrate 1 (IRS-1) is a major substrate of the insulin receptor and has been implicated in insulin signaling. Although IRS-1 is thought to interact with the insulin receptor, the nature of the interaction has not been defined. In this study, we used the two-hybrid assay of protein-protein interaction in the yeast Saccharomyces cerevisiae to study the interaction between human IRS-1 and the insulin receptor. We demonstrate that IRS-1 forms a specific complex with the cytoplasmic domain of the insulin receptor when both are expressed as hybrid proteins in yeast cells. We show that the interaction is strictly dependent upon receptor tyrosine kinase activity, since IRS-1 shows no interaction with a kinase-inactive receptor hybrid containing a mutated ATP-binding site. Furthermore, mutation of receptor tyrosine 960 to phenylalanine eliminates IRS-1 interaction in the two-hybrid assay. These data suggest that the interaction between IRS-1 and the receptor is direct and provide evidence that the juxtamembrane domain of the receptor is involved. Furthermore, we show that a 356-amino-acid region encompassed by amino acids 160 through 516 of IRS-1 is sufficient for interaction with the receptor in the two-hybrid assay. Lastly, in agreement with our findings for yeast cells, we show that the insulin receptor is unable to phosphorylate an IRS-1 protein containing a deletion of amino acids 45 to 516 when expressed in COS cells. The two-hybrid assay should provide a facile means by which to pursue a detailed understanding of this interaction.  相似文献   

3.
4.
5.
Ankyrins contain significant amino acid identity and are co-expressed in many cell types yet maintain unique functions in vivo. Recent studies have identified the highly divergent C-terminal domain in ankyrin-B as the key domain for driving ankyrin-B-specific functions in cardiomyocytes. Here we identify an intramolecular interaction between the C-terminal domain and the membrane-binding domain of ankyrin-B using pure proteins in solution and the yeast two-hybrid assay. Through extensive deletion and alanine-scanning mutagenesis we have mapped key residues for interaction in both domains. Amino acids (1597)EED(1599) located in the ankyrin-B C-terminal domain and amino acids Arg(37)/Arg(40) located in ANK repeat 1 are necessary for inter-domain interactions in yeast two-hybrid assays. Furthermore, conversion of amino acids EED(1597) to AAA(1597) leads to a loss of function in the localization of inositol 1,4,5-trisphosphate receptors in ankyrin-B mutant cardiomyocytes. Physical properties of the ankyrin-B C-terminal domain determined by circular dichroism spectroscopy and hydrodynamic parameters reveal it is unstructured and highly extended in solution. Similar structural studies performed on full-length 220-kDa ankyrin-B harboring alanine substitutions, (1597)AAA(1599), reveal a more extended conformation compared with wild-type ankyrin-B. Taken together these results suggest a model of an extended and unstructured C-terminal domain folding back to bind and potentially regulate the membrane-binding domain of ankyrin-B.  相似文献   

6.
The LAG-2 membrane protein is a putative signaling ligand for the LIN-12 and GLP-1 receptors of Caenorhabditis elegans. LAG-2, like its Drosophila homologues Delta and Serrate, acts in a conserved signal transduction pathway to regulate cell fates during development. In this article, we investigate the functional domains of LAG-2. For the most part, mutants were constructed in vitro and assayed for activity in transgenic animals. We find a functional role for all major regions except one. Within the extracellular domain, the N-terminal region, which bears no known motif, and the DSL domain are both required. By contrast, the region bearing epidermal growth factor-like repeats can be deleted with no apparent reduction in rescuing activity. The intracellular region is not required for activity but instead plays a role in down-regulating LAG-2 function. Finally, membrane association is critical for mutant rescue.  相似文献   

7.
PINCH is a widely expressed and evolutionarily conserved protein comprising primarily five LIM domains, which are cysteine-rich consensus sequences implicated in mediating protein-protein interactions. We report here that PINCH is a binding protein for integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase that plays important roles in the cell adhesion, growth factor, and Wnt signaling pathways. The interaction between ILK and PINCH has been consistently observed under a variety of experimental conditions. They have interacted in yeast two-hybrid assays, in solution, and in solid-phase-based binding assays. Furthermore, ILK, but not vinculin or focal adhesion kinase, has been coisolated with PINCH from mammalian cells by immunoaffinity chromatography, indicating that PINCH and ILK associate with each other in vivo. The PINCH-ILK interaction is mediated by the N-terminal-most LIM domain (LIM1, residues 1 to 70) of PINCH and multiple ankyrin (ANK) repeats located within the N-terminal domain (residues 1 to 163) of ILK. Additionally, biochemical studies indicate that ILK, through the interaction with PINCH, is capable of forming a ternary complex with Nck-2, an SH2/SH3-containing adapter protein implicated in growth factor receptor kinase and small GTPase signaling pathways. Finally, we have found that PINCH is concentrated in peripheral ruffles of cells spreading on fibronectin and have detected clusters of PINCH that are colocalized with the alpha5beta1 integrins. These results demonstrate a specific protein recognition mechanism utilizing a specific LIM domain and multiple ANK repeats and suggest that PINCH functions as an adapter protein connecting ILK and the integrins with components of growth factor receptor kinase and small GTPase signaling pathways.  相似文献   

8.
To identify the proteins that interact and mediate angiotensin II receptor AT2-specific signaling, a random peptide library was screened by yeast-based Two-Hybrid protein-protein interaction assay technique. A peptide that shared significant homology with the amino acids located between the residues Gly-Xaa-Gly-Xaa-Xaa-Gly721 and Lys742, the residues predicted to be important for ATP binding of the ErbB3 and ErbB2 receptors, was identified to be interacting with the AT2 receptor. The interaction between the human ErbB3 receptor and the AT2 receptor was further confirmed using the cytoplasmic domain (amino acids 671-782) of the human ErbB3 receptor. Moreover, an AT2 receptor peptide that spans the amino acids 226-363, (spans the third ICL and carboxy terminal domain) could also interact with the AT2 receptor in a yeast Two-Hybrid protein-protein interaction assay. Studies using mutated and chimeric AT2 receptors showed that replacing the third intracellular loop (ICL) of the AT2 receptor with that of the AT1 abolishes the interaction between the ErbB3 and the AT2 in yeast Two-Hybrid protein-protein interaction assay. Thus the interaction between the AT2 receptor and the ErbB3 receptor seems to require the region spanning the third ICL and carboxy terminus of the AT2 receptor. Since the third ICL of the AT2 receptor is essential for exerting its inhibitory effects on cell growth, possible involvement of this region in the interaction with the cytoplasmic domain of the ErbB3 receptor suggests a novel signaling mechanism for the AT2 receptor mediated inhibition of cell growth. Furthermore, since both the AT2 and the ErbB3 receptors are expressed during fetal development, we propose that the existence of direct interaction between these two receptors may play a role in the regulation of growth during the initial stages of development.  相似文献   

9.
10.
The mammalian HIRA/UBN1/CABIN1/ASF1a (HUCA) histone chaperone complex deposits the histone H3 variant H3.3 into chromatin and is linked to gene activation, repression, and chromatin assembly in diverse cell contexts. We recently reported that a short N-terminal fragment of UBN1 containing amino acids 1-175 is necessary and sufficient for interaction with the WD repeats of HIRA and attributed this interaction to a region from residues 120-175 that is highly conserved with the yeast ortholog Hpc2 and so termed the HRD for Hpc2-related domain. In this report, through a more comprehensive and refined biochemical and mutational analysis, we identify a smaller and more moderately conserved region within residues 41-77 of UBN1, which we term the NHRD, that is essential for interaction with the HIRA WD repeats; we further demonstrate that the HRD is dispensable for this interaction. We employ analytical ultracentrifugation studies to demonstrate that the NHRD of UBN1 and the WD repeats of HIRA form a tight 1:1 complex with a dissociation constant in the nanomolar range. Mutagenesis experiments identify several key residues in the NHRD that are required for interaction with the HIRA WD repeat domain, stability of the HUCA complex in vitro and in vivo, and changes in chromatin organization in primary human cells. Together, these studies implicate the NHRD domain of UBN1 as being an essential region for HIRA interaction and chromatin organization by the HUCA complex.  相似文献   

11.
[PSI(+)], the prion form of the yeast Sup35 protein, results from the structural conversion of Sup35 from a soluble form into an infectious amyloid form. The infectivity of prions is thought to result from chaperone-dependent fiber cleavage that breaks large prion fibers into smaller, inheritable propagons. Like the mammalian prion protein PrP, Sup35 contains an oligopeptide repeat domain. Deletion analysis indicates that the oligopeptide repeat domain is critical for [PSI(+)] propagation, while a distinct region of the prion domain is responsible for prion nucleation. The PrP oligopeptide repeat domain can substitute for the Sup35 oligopeptide repeat domain in supporting [PSI(+)] propagation, suggesting a common role for repeats in supporting prion maintenance. However, randomizing the order of the amino acids in the Sup35 prion domain does not block prion formation or propagation, suggesting that amino acid composition is the primary determinant of Sup35's prion propensity. Thus, it is unclear what role the oligopeptide repeats play in [PSI(+)] propagation: the repeats could simply act as a non-specific spacer separating the prion nucleation domain from the rest of the protein; the repeats could contain specific compositional elements that promote prion propagation; or the repeats, while not essential for prion propagation, might explain some unique features of [PSI(+)]. Here, we test these three hypotheses and show that the ability of the Sup35 and PrP repeats to support [PSI(+)] propagation stems from their amino acid composition, not their primary sequences. Furthermore, we demonstrate that compositional requirements for the repeat domain are distinct from those of the nucleation domain, indicating that prion nucleation and propagation are driven by distinct compositional features.  相似文献   

12.
13.
14.
Crystal structure of a 12 ANK repeat stack from human ankyrinR   总被引:6,自引:0,他引:6  
Ankyrins are multifunctional adaptors that link specific proteins to the membrane-associated, spectrin- actin cytoskeleton. The N-terminal, 'membrane-binding' domain of ankyrins contains 24 ANK repeats and mediates most binding activities. Repeats 13-24 are especially active, with known sites of interaction for the Na/K ATPase, Cl/HCO(3) anion exchanger, voltage-gated sodium channel, clathrin heavy chain and L1 family cell adhesion molecules. Here we report the crystal structure of a human ankyrinR construct containing ANK repeats 13-24 and a portion of the spectrin-binding domain. The ANK repeats are observed to form a contiguous spiral stack with which the spectrin-binding domain fragment associates as an extended strand. The structural information has been used to construct models of all 24 repeats of the membrane-binding domain as well as the interactions of the repeats with the Cl/HCO(3) anion exchanger and clathrin. These models, together with available binding studies, suggest that ion transporters such as the anion exchanger associate in a large central cavity formed by the ANK repeat spiral, while clathrin and cell adhesion molecules associate with specific regions outside this cavity.  相似文献   

15.
16.
We investigated the control of proliferation and differentiation in the larval Caenorhabditis elegans hermaphrodite germ line through analysis of glp-1 and lag-2 mutants, cell ablations, and ultrastructural data. After the first several rounds of germ cell division, GLP-1, a receptor of the LIN-12/Notch family, governs germline proliferation. We analyzed the proximal proliferation (Pro) phenotype in glp-1(ar202) and found that initial meiosis was delayed and spatially mispositioned. This is due, at least in part, to a heightened response of the mutant GLP-1 receptor to multiple sources of the somatic ligand LAG-2, including the proximal somatic gonad. We investigated whether proximal LAG-2 affects germline proliferation in the wild type. Our results indicate that (1) LAG-2 is necessary for GLP-1-mediated germline proliferation and prevention of early meiosis, and (2) several distinct anatomical sources of LAG-2 in the larval somatic gonad functionally overlap to promote proliferation and prevent early meiosis. Ultrastructural studies suggest that mitosis is not restricted to areas of direct DTC-germ line contact and that the germ line shares a common cytoplasm in larval stages. We propose that downregulation of the GLP-1 signaling pathway in the proximal germ line at the time of meiotic onset is under tight temporal and spatial control.  相似文献   

17.
18.
The SHC proteins have been implicated in insulin receptor (IR) signaling. In this study, we used the sensitive two-hybrid assay of protein-protein interaction to demonstrate that SHC interacts directly with the IR. The interaction is mediated by SHC amino acids 1 to 238 and is therefore independent of the Src homology 2 domain. The interaction is dependent upon IR autophosphorylation, since the interaction is eliminated by mutation of the IR ATP-binding site. In addition, mutational analysis of the Asn-Pro-Glu-Tyr (NPEY) motif within the juxtamembrane domain of the IR showed the importance of the Asn, Pro, and Tyr residues to both SHC and IR substrate 1 (IRS-1) binding. We conclude that SHC interacts directly with the IR and that phosphorylation of Tyr-960 within the IR juxtamembrane domain is necessary for efficient interaction. This interaction is highly reminiscent of that of IRS-1 with the IR, and we show that the SHC IR-binding domain can substitute for that of IRS-1 in yeast and COS cells. We identify a homologous region within the IR-binding domains of SHC and IRS-1, which we term the SAIN (SHC and IRS-1 NPXY-binding) domain, which may explain the basis of these interactions. The SAIN domain appears to represent a novel motif which is able to interact with autophosphorylated receptors such as the IR.  相似文献   

19.
The ligand binding domain of the low density lipoprotein receptor consists of seven cysteine-rich repeats of approximately 40 amino acids each. These repeats, which are located at the NH2 terminus of the protein, are homologous to sequences in complement components C8 and C9. To determine the role of the first repeat (amino acids 2-42), we prepared two plasmids containing expressible low density lipoprotein receptor cDNAs. The first plasmid, p delta R1, lacks only the nucleotides encoding the first repeat. It produced a receptor that bound and internalized lipoproteins and recycled to the cell surface with the same efficiency as the normal receptor. This deleted receptor failed to bind two monoclonal antibodies, IgG-C7 and IgG-15C8, which were shown previously to react with the ligand-binding domain. The second plasmid, pR1, encodes a markedly truncated protein whose extracellular domain consists of the first repeat joined to the transmembrane and cytoplasmic domains. This protein bound the two monoclonal antibodies with the same affinity as the normal receptor, but failed to bind lipoproteins. Binding of IgG-15C8 to the normal receptor and the pR1-encoded protein was Ca2+-dependent, indicating that the first repeat binds Ca2+. We conclude that repeats 2-6 in the ligand-binding domain are sufficient for binding lipoproteins and that the first repeat is highly immunogenic, but is not required for lipoprotein binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号