首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
4.
Productive engagement of TCR results in delivering signals required for T cell proliferation as well as T cell survival. Blocking TCR-mediated survival signals, T cells undergo apoptosis instead of proliferation upon TCR stimulation. During the activation process, T cells produce IL-2, which acts as an extrinsic survival factor. In addition, TCR stimulation results in up-regulation of Bcl-xL to enhance T cell survival intrinsically. We show in this study that protein kinase C (PKC)-theta is required for enhancing the survival of activated CD4+ T cells by up-regulating Bcl-xL. In response to TCR stimulation, CD4+ PKC-theta-/- T cells failed to up-regulate Bcl-xL, and underwent accelerated apoptosis via a caspase- and mitochondria-dependent pathway. Similar to PKC-theta-deficient primary CD4+ T cells, small interfering RNA-mediated knockdown of PKC-theta in Jurkat cells also resulted in apoptosis upon TCR stimulation. Forced expression of Bcl-xL was sufficient to inhibit apoptosis observed in PKC-theta knockdown cells. Furthermore, ectopic expression of PKC-theta stimulated a reporter gene driven by a mouse Bcl-xL promoter. Whereas an inactive form of PKC-theta or knockdown of endogenous PKC-theta led to inhibition of Bcl-xL reporter. PKC-theta-mediated activation of Bcl-xL reporter was inhibited by dominant-negative IkappaB kinase beta or dominant-negative AP-1. Thus, the PKC-theta-mediated signals may function not only in the initial activation of naive CD4+ T cells, but also in their survival during T cell activation by regulating Bcl-xL levels through NF-kappaB and AP-1 pathways.  相似文献   

5.
6.
7.
8.
Murine T helper cell clones are classified into two distinct subsets, T helper 1 (Th1) and T helper 2 (Th2), on the basis of cytokine secretion patterns. Th1 clones produce interleukin-2 (IL-2), tumor necrosis factor-beta (TNF-beta) and interferon-gamma (IFN-gamma), while Th2 clones produce IL-4, IL-5, IL-6 and IL-10. These subsets differentially promote delayed-type hypersensitivity or antibody responses, respectively. The nuclear factor NF-AT is induced in Th1 clones stimulated through the T cell receptor-CD3 complex, and is required for IL-2 gene induction. The NF-AT complex consists of two components: NF-ATp, which pre-exists in the cytosol and whose appearance in the nucleus is induced by an increase of intracellular calcium, and a nuclear AP-1 component whose induction is dependent upon activation of protein kinase C (PKC). Here we report that the induction of the Th2-specific IL-4 gene in an activated Th2 clone involves an NF-AT complex that consists only of NF-ATp, and not the AP-1 component. On the basis of binding experiments we show that this 'AP-1-less' NF-AT complex is specific for the IL-4 promoter and does not reflect the inability of activated Th2 cells to induce the AP-1 component. We propose that NF-ATp is a common regulatory factor for both Th1 and Th2 cytokine genes, and that the involvement of PKC-dependent factors, such as AP-1, may help determine Th1-/Th2-specific patterns of gene expression.  相似文献   

9.
CD28 costimulation controls multiple aspects of T cell function, including the expression of proinflammatory cytokine genes. One of these genes encodes IL-2, a growth factor that influences T cell proliferation, survival, and differentiation. Antigenic signaling in the absence of CD28 costimulation leads to anergy, a mechanism of tolerance that renders CD4+ T cells unable to produce IL-2. The molecular mechanisms by which CD28 costimulatory signals induce gene expression are not fully understood. In eukaryotic cells, the expression of many genes is influenced by their physical structure at the level of DNA methylation and local chromatin remodeling. To address whether these epigenetic mechanisms are operative during CD28-dependent gene expression in CD4+ T cells, we compared cytosine methylation and chromatin structure at the IL-2 locus in fully activated CD4+ effector T cells and CD4+ T cells rendered anergic by TCR ligation in the absence of CD28 costimulation. Costimulation through CD28 led to marked, stable histone acetylation and loss of cytosine methylation at the IL-2 promoter/enhancer. This was accompanied by extensive remodeling of the chromatin in this region to a structure highly accessible to DNA binding proteins. Conversely, TCR activation in the absence of CD28 costimulation was not sufficient to promote histone acetylation or cytosine demethylation, and the IL-2 promoter/enhancer in anergic cells remained completely inaccessible. These data suggest that CD28 may function through epigenetic mechanisms to promote CD4+ T cell responses.  相似文献   

10.
11.
IL-4, primarily produced by T cells, mast cells, and basophiles, is a cytokine which has pleiotropic effects on the immune system. IL-4 induces T cells to differentiate to Th2 cells and activated B lymphocytes to proliferate and to synthesize IgE and IgG1. IL-4 is particularly important for the development and perpetuation of asthma and allergy. Stat6 is the protein activated by signal transduction through the IL-4R, and studies with knockout mice demonstrate that Stat6 is critical for a number of IL-4-mediated functions including Th2 development and production of IgE. In the present study, novel IL-4- and Stat6-regulated genes were discovered by using Stat6(-/-) mice and Affymetrix oligonucleotide arrays. Genes regulated by IL-4 were identified by comparing the gene expression profile of the wild-type T cells induced to polarize to the Th2 direction (CD3/CD28 activation + IL-4) to gene expression profile of the cells induced to proliferate (CD3/CD28 activation alone). Stat6-regulated genes were identified by comparing the cells isolated from the wild-type and Stat6(-/-) mice; in this experiment the cells were induced to differentiate to the Th2 direction (CD3/CD28 activation + IL-4). Our study demonstrates that a number a novel genes are regulated by IL-4 through Stat6-dependent and -independent pathways. Moreover, elucidation of kinetics of gene expression at early stages of cell differentiation reveals several genes regulated rapidly during the process, suggesting their importance for the differentiation process.  相似文献   

12.
CD4 T cell help plays an important role in promoting CD8 T cell immunity to pathogens. In models of infection with vaccinia virus (VV) and Listeria monocytogenes, CD4 T cell help is critical for the survival of activated CD8 T cells during both the primary and memory recall responses. Still unclear, however, is how CD4 T cell help promotes CD8 T cell survival. In this study, we first showed that CD4 T cell help for the CD8 T cell response to VV infection was mediated by IL-21, a cytokine produced predominantly by activated CD4 T cells, and that direct action of IL-21 on CD8 T cells was critical for the VV-specific CD8 T cell response in vivo. We next demonstrated that this intrinsic IL-21 signaling was essential for the survival of activated CD8 T cells and the generation of long-lived memory cells. We further revealed that IL-21 promoted CD8 T cell survival in a mechanism dependent on activation of the STAT1 and STAT3 pathways and subsequent upregulation of the prosurvival molecules Bcl-2 and Bcl-x(L). These results identify a critical role for intrinsic IL-21 signaling in CD8 T cell responses to an acute viral infection in vivo and may help design effective vaccine strategies.  相似文献   

13.
14.
15.
16.
17.
In previous studies, we have shown that Th2 cell differentiation is diminished but Th1 cell differentiation is increased in Stat5a-deficient (Stat5a(-/-)) CD4(+) T cells. In the present study, we clarified the molecular mechanisms of Stat5a-mediated Th cell differentiation. We found that enhanced Th1 cell differentiation and the resultant IFN-gamma production played a dominant inhibitory role in the down-regulation of IL-4-induced Th2 cell differentiation of Stat5a(-/-) CD4(+) T cells. We also found that IL-12-induced Stat4 phosphorylation and Th1 cell differentiation were augmented in Stat5a(-/-) CD4(+) T cells. Importantly, the expression of suppressor of cytokine signaling (SOCS)3, a potent inhibitor of IL-12-induced Stat4 activation, was decreased in Stat5a(-/-) CD4(+) T cells. Moreover, a reporter assay showed that a constitutively active form of Stat5a but not Stat6 activated the SOCS3 promoter. Furthermore, chromatin immunoprecipitation assays revealed that Stat5a binds to the SOCS3 promoter in CD4(+) T cells. Finally, the retrovirus-mediated expression of SOCS3 restored the impaired Th cell differentiation of Stat5a(-/-) CD4(+) T cells. These results suggest that Stat5a forces the Th1/Th2 balance toward a Th2-type by preventing IL-12-induced Th1 cell differentiation through the induction of SOCS3.  相似文献   

18.
Interleukin (IL)-6 plays an important role in a wide range of biological activities, including differentiation of murine M1 myeloid leukemic cells into mature macrophages. At the onset of M1 differentiation, a set of myeloid differentiation primary response (MyD) genes are induced, including the proto-oncogene for JunB. In order to examine the molecular nature of the mechanisms by which IL-6 activates the immediate early expression of MyD genes, JunB was used as a paradigm. A novel IL-6 response element, -65/-52 IL-6RE, to which a 100-kDa protein complex is bound, has been identified on the JunB promoter. Leukemia inhibitory factor (LIF)-induced activation of JunB in M1 cells was also mediated via the -65/-52 IL-6RE. The STAT3 and CRE-like binding sites of the JunB promoter, identified as IL-6-responsive elements in HepG2 liver cells were found, however, to play no role in JunB inducibility by IL-6 in M1 myeloid cells. Conversely, the -65/-52 IL-6RE is shown not to be necessary for JunB inducibility by IL-6 or LIF in liver cells. It appears, therefore, that immediate early activation of JunB is regulated differently in M1 myeloid cells than in HepG2 liver cells. This indicates that distinct cis-acting control elements participate in cell type-specific induction of JunB by members of the IL-6 cytokine superfamily.  相似文献   

19.
Memory T cells (T(M)) are able to rapidly exert effector functions, including immediate effector cytokine production upon re-encounter with Ag, which is critical for protective immunity. Furthermore, this poised state is maintained as T(M) undergo homeostatic proliferation over time. We examined the molecular basis underlying this enhanced functional capacity in CD8 T(M) by comparing them to defective CD8 T(M) generated in the absence of CD4 T cells. Unhelped CD8 T(M) are defective in many functions, including the immediate expression of cytokines, such as IL-2 and IFN-gamma. Our data show that this defect in IL-2 and IFN-gamma production is independent of clonal selection, functional avidity maturation, and the integrity of proximal TCR signaling, but rather involves epigenetic modification of these cytokine genes. Activated Ag-specific CD8 T cells exhibit rapid DNA demethylation at the IL-2 and IFN-gamma loci and substantial histone acetylation at the IFN-gamma promoter and enhancer regions. These epigenetic modifications occur early after infection at the effector stage and are maintained through memory development. However, activated unhelped CD8 T cells, which fail to develop into functional memory and are incapable of rapid cytokine production, exhibit increased DNA methylation at the IL-2 promoter and fail to acetylate histones at the IFN-gamma locus. Thus, CD4 T cell help influences epigenetic modification during CD8 T(M) differentiation and these epigenetic changes provide a molecular basis for the enhanced responsiveness and the maintenance of a "ready-to-respond" state in CD8 T(M).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号