首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Competing inhibition of Bacillus licheniformis 749/C penicillinase by alkylsulfates CnH2n+ 1OSO3N1 where n was 8--16 was studied. The values of the inhibition constants Ki of individual homologues were estimated. It was shown that stability of complex "enzyme-inhibitor" increased with lengthening of the hydrocarbon radical which was probably due to increased hydrophobic interaction of the alkyl radical with the lipophilic areas of the penicillinase active center. Inhibition in the presence of sopolymers of vinylpirrolidone with N-alkylvinylamine was studied with the aim of modeling the process of penicillinase inhibitions by alkylsulfates in the presence of the blood serum. It was shown that polyelectrolytes posessing hydrophobic substituents had an ability of reducing the activity of inhibited penicillinase, cooperative transfer of alkylsulfate molecules from the enzyme to polyelectrolyte being observed. The maximum effect was registered in the polyelectrolytes with substituents C12H25 and C16H33 which was confirmed in the experiments with the penicillinase-producing strains of staphylococci.  相似文献   

2.
The synergistic effects of 6-alk(en)ylsalcylic acids, also known as anacardic acids, in combination with methicillin against Staphylococcus aureus ATCC 33591 (MRSA) was investigated. The double bond in C15-anacardic acids is not essential in eliciting the antibacterial activity but is associated with increasing the activity. The synergistic effects decreased with increasing the number of double bonds in the alkyl chain. On the other hand, the antibacterial activity of anacardic acids possessing different alkyl chain lengths against the same MRSA strain was found to be a parabolic function of their lipophilicity and maximized with the alkyl chain length of C10 and C12. Notably, the synergistic effects were noted to increase with increasing the alkyl chain length.  相似文献   

3.
A series of alkyl gallates (3,4,5-trihydroxybenzoates) was found to show antibacterial activity against Gram-positive bacteria including methicillin resistant Staphylococcus aureus (MRSA) strains. For example, dodecyl (C(12)) gallate (1) exhibited bactericidal activity against MRSA ATCC 33591 strain with the minimum bactericidal concentration (MBC) of 25 microg/mL (74 microM). The time-kill curve study showed that dodecyl gallate is bactericidal against this MRSA strain. This bactericidal activity comes in part from its ability to inhibit respiratory electron transport systems. The length of the alkyl chain is not a major contributor but plays an important role in eliciting the activity.  相似文献   

4.
A number of novel redox surfactants (based on mixed bipyridine/dipyridylamine complexes of osmium (II) where the dipyridylamine ligands bears a saturated C(8), C(10), C(12), C(14), or C(16) alkyl chain) were synthesized and characterized electrochemically and biochemically as mediators for glucose oxidase (EC 1.1.3.4, GOD) of Aspergillus niger. These compounds exhibited critical micelle concentrations (CMCs) in phosphate-buffered saline solution (pH 7.4) in the range 10(-4) 10 10(-3) M, the value decreasing with increasing chain length. Dependence of a number of properties (speed of mediation, redox potential, denaturing action on the enzyme, adsorption on an electrode surface) on the length of the mediator alkyl chain was observed. The presence of an alkyl chain decreased the rate of mediation relative to otherwise similar nonsurfactant mediators, and the longer alkyl chain, the slower the rate of mediation. For each compound, mediation above the CMC was about tenfold slower than that observed below the CMC. However, for the cases of mediator absorbed on an electrode surface with GOD, longer chains give increased physisorption of mixed micelles of enzyme and mediator. The compounds were incidentally found to inhibit the glucose oxidase activity of GOD in a complex manner; inhibition increased with increasing chain length and the deactivation, for any given compound, was more pronounced below the CMC than above. Glucose oxidase activity assays and study of the action of surfactants and mediators on the fluorescent properties of carboxy-fluorescein-labeled GOD led to the consideration of a model for redox surfactant-GOD interaction where three mechanisms may operate: first, a selective interaction of mediators with the GOD active site; second, a nondenaturing association of short-chain (相似文献   

5.
Inhibition of Aerobacter Cephalosporin β-Lactamase by Penicillins   总被引:1,自引:1,他引:0       下载免费PDF全文
Cephalosporinase (beta-lactamase) was obtained from cell washings of Aerobacter (Enterobacter) cloacae as a highly active preparation. An alkalimetric method was used to determine the enzyme activity and to estimate its inhibition by 6-amino-penicillanic acid derivatives. Their order of decreasing inhibitory effect was as follows: cloxacillin, oxacillin, methicillin, ampicillin, and penicillin G. We found that 2 to 3 ng of cloxacillin per ml was sufficient to decrease the enzyme activity by 50% in the presence of 400 mug of cephalosporin C per ml. Cloxacillin exerted a potentiating effect on the inhibition of the E. cloacae organisms by cephalosporin C.  相似文献   

6.
Non-antibiotic antibacterial activity of dodecyl gallate   总被引:2,自引:0,他引:2  
Dodecyl (C(12)) gallate (3,4,5-trihydroxybenzoate) (1) was found to possess antibacterial activity specifically against Gram-positive bacteria, in addition to its potent antioxidant activity. The time-kill curve study indicates that this amphipathic gallate exhibits bactericidal activity against methicillin resistant Staphylococcus aureus (MRSA) strains. Dodecyl (lauryl) gallate inhibited oxygen consumption in whole cells and oxidation of NADH in membrane preparation. The antibacterial activity of this gallate comes in part from its ability to inhibit the membrane respiratory chain. As far as alkyl gallates are concerned, their antimicrobial spectra and potency depend in part on the hydrophobic portion of the molecule.  相似文献   

7.
It is found that yeast pyruvate decarboxylase is inhibited by alkyl phosphates. Inhibition is competitive with respect to a substrate. The inhibition constants with n-butyl and n-heptyl esters of phosphoric acid are the values of the same order of magnitude. With an increase in the length of the alkyl phosphates hydrocarbon chain from 7 to 10 carbon atoms inhibition constants change drastically. For n-heptyl phosphate and n-decyl phosphate values KI are equal to 1.6 x 10(-4) M and 1.7 x 10(-6) M, respectively. A further increase in the number of carbon atoms in the alkyl substituent of phosphoric acid ester induces no reduction of the inhibition constant. Multiple-inhibitor experiments of pyruvate decarboxylase show that inorganic phosphate and n-decyl ester of phosphoric acid are mutually exclusive. It is suggested that the inhibition mechanism with alkyl phosphates includes the competition of the phosphoric acid residue with alpha-ketocarboxyl group of pyruvate as well as the interaction between a hydrocarbon radical and hydrophobic parts on the enzyme surface, one of them being outside the substrate binding site.  相似文献   

8.
A series of alkyldimethylbenzylammonium chlorides have been synthesized with n-alkyl chain lengths of C1 leads to C18. Octanol/water partition coefficients were determined and the antimicrobial activity assessed as the minimum growth inhibitory concentrations towards twelve strains of micro-organisms, representative of Gram-negative and Gram-positive bacteria, yeasts and fungi. The data were subjected to a numerical analysis. Antimicrobial activity of the compounds was found to be a parabolic function of their lipophilicity and maximized with n-alkyl chain lengths of between C12 and C16. The data fit to quadratic functions estimated for low (C1-C7) and high (C8-C16) alkyl chain length compounds was better than for a single quadratic describing the activity of the complete series (C1-C18). These maximized at log P values corresponding to alkyl-chain lengths of approximately C7 and C14 respectively, and were suggestive of low and high affinity binding sites upon the cell surface. The data analysis allowed the chain lengths of compounds with optimal activity towards the various groups of organisms to be determined. Generally yeasts and fungi were most sensitive towards C12, Gram-positive bacteria towards C14, and the Gram-negative bacteria towards C16. Gram-negative cells were the most resistant towards all the compounds and Gram-positive cells the least.  相似文献   

9.
A series of n-alcohols and n-alkylthiols with carbon chains from 2 to 12 were examined for the inhibition of soybean lipoxygenase-1 (L-1). The alcohol produces a competitive inhibition, the extent of which increases with an increase in the carbon number of alkyl chain up to 8. Whereas the inhibition of the alkylthiol is noncompetitive, the extent of which is almost independent from the carbon number. From the behavior of pKi dependence on the carbon number of the alcohol, the decyl group appears to be optimum to bind to L-1. The thermodynamic analysis for the inhibition based upon van 't Hoff equation indicates positive enthalpy and entropy changes for the binding of the alcohol to the enzyme and negative enthalpy and positive to negative entropy changes for that of the alkylthiol. These observations suggest that the alcohol inhibits L-1 by binding of the hydrophobic alkyl tail to the catalytic site of the enzyme by a hydrophobic interaction. The alkylthiol inhibits by binding of the nucleophilic sulfhydryl head to a polarizable region of the enzyme and the alkyl tail to a hydrophobic region of the enzyme free from the steric hindrance as an anchor.  相似文献   

10.
Numerous approaches have been described for creating relatively small folded biomolecular structures. "Peptide-amphiphiles," whereby monoalkyl or dialkyl hydrocarbon chains are covalently linked to peptide sequences, have been shown previously to form specific molecular architecture of enhanced stability. The present study has examined the use of monoalkyl hydrocarbon chains as a more general method for inducing protein-like structures. Peptide and peptide-amphiphiles have been characterized by CD and one- and two-dimensional nmr spectroscopic techniques. We have examined two structural elements: alpha-helices and collagen-like triple helices. The alpha-helical propensity of a 16-residue peptide either unmodified or acylated with a C(6) or C(16) monoalkyl hydrocarbon chain has been examined initially. The 16-residue peptide alone does not form a distinct structure in solution, whereas the 16-residue peptide adopts predominantly an alpha-helical structure in solution when a C(6) or C(16) monoalkyl hydrocarbon chain is N-terminally acylated. The thermal stability of the alpha-helix is greater upon addition of the C(16) compared with the C(6) chain, which correlates to the extent of aggregation induced by the respective hydrocarbon chains. Very similar results are seen using a 39-residue triple-helical model peptide, in that structural thermal stability (a) is increasingly enhanced as alkyl chain length is increased and (b) correlates to the extent of peptide-amphiphile aggregation. Overall, structures as diverse as alpha-helices, triple helices, and turns/loops have been shown to be induced and/or stabilized by alkyl chains. Increasing alkyl chain length enhances stability of the structural element and induces aggregates of defined sizes. Hydrocarbon chains may be useful as general tools for protein-like structure initiation and stabilization as well as biomaterial modification.  相似文献   

11.
The temperature dependence of lipid-depleted beef heart cytochrome c oxidase activity was studied in a series of chemically homogeneous detergents. The detergents that were tested included C10 to C18 maltosides, C8 to C12 glucosides, C8 to C16 Zwittergents, and C12 poly(oxyethylene) ethers. The observed rates of electron transport were dependent upon the structure of the polar head group and the length of the hydrocarbon tail. Of the detergents tested, the alkyl maltosides were the best in terms of both high rates of electron transport and superior enzyme stability. With the maltosides, changing the length of the alkyl tail affected the activity of cytochrome c oxidase in a manner quite similar to that reported with synthetic phosphatidylcholines and phosphatidylethanolamines [Vik, S. B., & Capaldi, R. A. (1977) Biochemistry 16, 5755-5759], suggesting that the alkyl maltosides can mimic some of the features of the membrane environment. In each of the detergents, the activation enthalpy (determined from the slope of an Arrhenius plot) was nearly identical, suggesting that the same electron-transfer step within cytochrome c oxidase is rate limiting. This result has been interpreted as evidence for the existence of two or more conformers of cytochrome c oxidase, one of which is significantly more active than the other(s). The enzyme turnover number, which changes by 2 orders of magnitude depending upon the structure of the bound detergent, may reflect the ability of each detergent to alter the equilibrium between the active and nearly inactive conformers.  相似文献   

12.
The capacity of a range of aliphatic alkanes (C6–C16), intermediates of n-decane oxidation and sodium dodecyl sulphate (SDS) to induce decane-mineralization activity in the cells of Pseudomonas C12B was compared with that for n-decane. The comparison on quantitative basis had two serious limitations: low solubility of tested inducers in aqueous solutions and their toxicity to bacterial cells. Carbon chain length and the presence of hydroxyl group were the important factors for induction activity. However, presence of hydroxyl groups at both ends of alkyl chain prevented the induction of decane-mineralization activity. Good induction activity by SDS was caused either by the presence of free end of alkyl chain, or by bacterial hydrolysis of sulphate group to yield alcohol, which in turn served as true inducer. The presence of SDS in the culture medium with n-decane as main source of carbon and energy accelerated the growth of Pseudomonas C12B. SDS disappeared from the culture medium in early stages of cultivation suggesting preferential degradation by the bacterium, while the consumption of n-decane was accelerated. This may be associated with the capacity of SDS to induce decane-mineralization system in Pseudomonas C12B and/or with the ability of SDS to stimulate the surface attachment of competent bacteria resulting in the close proximity of the cells with alkane droplets, and thus, enhanced breakdown of the hydrocarbon pollutant.  相似文献   

13.
Antibacterial activity of a series of alkyl gallates (3,4,5-trihydroxybenzoates) against Gram-positive bacteria, especially methicillin resistant Staphylococcus aureus (MRSA) strains was evaluated. Gram-positive bacteria are all susceptible to alkyl gallates. Dodecyl gallate was the most effective against MRSA ATCC 33591 strain with the minimum bactericidal concentration (MBC) of 25 microg/mL (74 microM). The time-kill curve study showed that dodecyl gallate was bactericidal against this MRSA strain at any growth stage. This activity was observed even in the chloramphenicol-treated cells, but the rate of decrease of cell number was slower than that in the exponentially growing cells. The bactericidal activity of medium-chain alkyl gallates was noted in combination with their ability to disrupt the native membrane-associated function nonspecifically as surface-active agents (surfactants) and to inhibit the respiratory electron transport. Subsequently, the same series of alkyl protocatechuates (3,4-dihydroxybenzoates) were studied and the results obtained are similar to those found for alkyl gallates. The length of the alkyl chain is not a major contributor but is related to the activity.  相似文献   

14.
Increasing numbers of bacterial strains being resistant to conventional antibiotics emphasize the urgent need for new antimicrobial agents. One strategy is based on host defence peptides that can be found in every organism including humans. We have studied the antimicrobial peptide LF11, derived from the pepsin cleavage product of human lactoferrin, known for its antimicrobial and lipid A-binding activity, and peptide C12LF11, the N-lauryl-derivative of LF11, which has owing to the attached hydrocarbon chain an additional hydrophobic segment. The influence of this hydrocarbon chain on membrane selectivity was studied using model membranes composed of dipalmitoylphosphatidylglycerol (DPPG), mimicking bacterial plasma membranes, and of dipalmitoylphosphatidylcholine (DPPC), a model system for mammalian membranes. A variety of biophysical techniques was applied. Thereby, we found that LF11 did not affect DPPC bilayers and showed only moderate effects on DPPG membranes in accordance with its non-hemolytic and weak antimicrobial activity. In contrast, the introduction of the N-lauryl group caused significant changes in the phase behaviour and lipid chain packing in both model membrane systems. These findings correlate with the in vitro tests on methicillin resistant S. aureus, E. coli, P. aeruginosa and human red blood cells, showing increased biological activity of C12LF11 towards these test organisms. This provides evidence that both electrostatic and hydrophobic interactions are crucial for biological activity of antimicrobial peptides, whereas a certain balance between the two components has to be kept, in order not to loose the specificity for bacterial membranes.  相似文献   

15.
Sensitivity of 125 strains of group B streptococci isolated from newborns, their mothers and personnel in a maternity home was studied with respect to 12 antibiotics: benzylpenicillin, ampicillin, methicillin, cephalotin, erythromycin, lincomycin, levomycetin (chloramphenicol), oxacillin, tetracycline, streptomycin, gentamicin and ristomycin. The method of serial dilutions in a solid medium was applied. All the strains were sensitive to ristomycin and erythromycin. The predominating number of the strains were sensitive to lincomycin, levomycetin and the beta-lactam antibiotics. Strains resistant or moderately resistant to benzylpenicillin, ampicillin, oxacillin, methicillin and cephalotin were detected. The majority of the strains were resistant to streptomycin, tetracycline and gentamicin. Multiple antibiotic resistance with 2-7 determinants was revealed in 11.2 per cent of the strains. The antibiotic sensitivity of the strains isolated from the newborns, their mothers and the personnel in the maternity home was on the whole similar or insignificantly differed.  相似文献   

16.
The inhibitory effects of saturated fatty acids with 4 to 18 carbon atoms on ADP-induced aggregation of bovine platelets were investigated. The inhibitory effects of the acids increased with increase of their alkyl chain length up to C14. On the other hand, from C16 the inhibitory effects tended to decrease with increase of chain length, and stearic acid (C18) was not inhibitory. There was a linear relationship between the inhibitory effects and alkyl chain lengths up to C12. This linear relation and the slope of the linear regression line suggested that the inhibitory effects of the acids depended on their partition into the membrane. The fatty acids decreased the fluorescence of the surface charge probe 2-p-toluidinylnaphthalene-6-sulfonate, indicating that they increased the negative charge on the membrane surface. The relative effects of the acids on the fluorescence were consistent with their relative inhibitory effects on aggregation. These results suggest that the inhibition of platelet aggregation by saturated fatty acids is due to a change in the membrane surface charge of the platelet plasma membrane.  相似文献   

17.
18.
J Wang  G Meng  K Tao  M Feng  X Zhao  Z Li  H Xu  D Xia  JR Lu 《PloS one》2012,7(8):e43478

Background

Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification.

Methodology/Principal Findings

Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe3O4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining.

Conclusions/Significance

The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.  相似文献   

19.
Septum formation and septum separation have been studied in a chain-forming mutant of Escherichia coli K-12 bearing the envA mutation and its parental strain. In comparison to the wild type, the mutant showed a sixfold reduction in the specific activity of the enzyme, N-acetylmuramyl-L-alanine amidase (EC 3.5.1.28), part of which was associated to the outer membrane. Genetic as well as physiological suppression of chain formation resulted in an increase in amidase activity. The addition of N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid to growing wild-type cells and to cells bearing the envA mutation caused an inhibition of cell separation and an increased frequency of visible septa. The kinetics of septum formation and separation was followed in chains by the use of ampicillin and nalidixic acid. The latter drug inhibited initiation of new septa but allowed preformed ones to go to cell separation at a rate corresponding to that of steady-state growing cells. Ampicillin treatment, on the other hand, resulted in a more rapid decrease in the frequency of septa. The disparate effects of ampicillin and nalidixic acid were not explained by a difference in amidase activity but could be due to an inhibitory effect of ampicillin on a septal peptidoglycan fusing activity.  相似文献   

20.
Increasing numbers of bacterial strains being resistant to conventional antibiotics emphasize the urgent need for new antimicrobial agents. One strategy is based on host defence peptides that can be found in every organism including humans. We have studied the antimicrobial peptide LF11, derived from the pepsin cleavage product of human lactoferrin, known for its antimicrobial and lipid A-binding activity, and peptide C12LF11, the N-lauryl-derivative of LF11, which has owing to the attached hydrocarbon chain an additional hydrophobic segment. The influence of this hydrocarbon chain on membrane selectivity was studied using model membranes composed of dipalmitoylphosphatidylglycerol (DPPG), mimicking bacterial plasma membranes, and of dipalmitoylphosphatidylcholine (DPPC), a model system for mammalian membranes. A variety of biophysical techniques was applied. Thereby, we found that LF11 did not affect DPPC bilayers and showed only moderate effects on DPPG membranes in accordance with its non-hemolytic and weak antimicrobial activity. In contrast, the introduction of the N-lauryl group caused significant changes in the phase behaviour and lipid chain packing in both model membrane systems. These findings correlate with the in vitro tests on methicillin resistant S. aureus, E. coli, P. aeruginosa and human red blood cells, showing increased biological activity of C12LF11 towards these test organisms. This provides evidence that both electrostatic and hydrophobic interactions are crucial for biological activity of antimicrobial peptides, whereas a certain balance between the two components has to be kept, in order not to loose the specificity for bacterial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号