首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horseradish peroxidase (HRP) was injected into either a single maxillary or a single mandibular primary (deciduous) cuspid tooth of 8- to 10-week-old kittens. The large apex of the primary cuspid allowed for some leakage of the HRP from the pulpal chamber to the periodontal ligament (PDL). Thus, the injection procedure resulted in the application of HRP to the PDL as well as to the pulpal tissues. The transganglionic transport of HRP resulted in discrete terminal fields within the spinal trigeminal nucleus (STN) and the main sensory nucleus (MSN). These projections were clearly somatotopically organized within the STN, but less so within MSN. Within pars oralis (PO) and pars interpolaris (PI), mandibular cuspid dental structures (MdCDS) were represented in a dorsal position relative to the maxillary cuspid dental structures (MxCDS), whereas within pars caudalis (PC) and the adjacent reticular formation the somatotopic representation was not dorsoventral, but rather mediolateral, with the MdCDS represented more medially than the MxCDS. Areas of overlap between MxCDS and MdCDS were found within MSN and to a lesser degree within the superficial laminae of PC. In addition, the fiber pathway leading to labeled somata in the mesencephalic trigeminal (Mes V) nucleus was clearly identified. The majority of the fibers traced to the Mes V nucleus exited the spinal trigeminal tract at the level of the transition from PO to the MSN and traversed the nuclear region in a position dorsal to and separate from the trigeminal motor tract. As in STN, fibers within the caudal Mes V tract appeared to be somatotopically organized, with the fibers from the MdCDS generally more dorsal than the ones from the MxCDS. Labeled fibers, some with terminal arbors, were also identified in close association with the trigeminal motor tract. The findings show a complex pattern of central representation in the immature feline central nervous system for deciduous dental structures.  相似文献   

2.
The horseradish peroxidase (HRP) histochemical technique was used to examine the peripheral distribution and afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. Sensory fibers of the trigeminal nerve distribute over the head via four branches. The ophthalmic branch distributes fibers to the region above the eye and naris. The maxillary and mandibular branches innervate the regions of the upper and lower lip, respectively. A fourth branch of the trigeminal nerve was demonstrated to be present in the hyomandibular trunk. Upon entering the medulla the trigeminal afferent fibers divide into a rostromedially directed bundle and a caudally directed bundle. The rostromedially directed bundle terminates in the sensory trigeminal nucleus (STN) located within the rostral medulla. The majority of fibers turn caudally, forming the descending trigeminal tract. Fibers of the descending trigeminal tract terminate within three medullary nuclei: the nucleus of the descending trigeminal tract (NDTV), the spinal trigeminal nucleus (Spv), and the medial funicular nucleus (MFn). All projections, except for those to the MFn, are ipsilateral. Contralateral projections were observed at the level of the MFn following the labeling of the ophthalmic and maxillomandibular branches. All branches of the trigeminal nerve project to all four of the trigeminal medullary nuclei. Projections to the STN and MFn were found to be topographically organized such that the afferents of the ophthalmic branch project onto the ventral portion of these nuclei, while the afferents of the maxillo- and hyomandibular branches project to the dorsal portion of these nuclei. Cells of the mesencephalic trigeminal nucleus were retrogradely labeled following HRP application to the ophthalmic, maxillary, and mandibular branches of the trigeminal nerve. In addition to demonstrating the ascending mesencephalic trigeminal root fibers, HRP application to the above-mentioned branches also revealed descending mesencephalic trigeminal fibers. The descending mesencephalic trigeminal fibers course caudally medial to the branchiomeric motor column and terminate in the ventromedial portion of the MFn.  相似文献   

3.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

4.
Transganglionic transport of horseradish peroxidase conjugated to wheatgerm agglutinin (HRP:WGA) entrapped in hypoallergenic polyacrylamide gel was used to study the patterns of termination of primary afferents that innervate the upper and lower tooth pulps within the trigeminal sensory nuclear complex (TSNC) of the monkey. HRP:WGA injections were also made into the lower incisors and molars, in order to examine the topographic arrangement of pulpal afferent projections. HRP-labeled pulpal afferents innervating lower and upper teeth projected ipsilaterally to the rostral subnucleus dorsalis (Vpd) and caudal subnucleus ventralis (Vpv) of the nucleus principalis (Vp); the rostrodorsomedial (Vo.r) and dorsomedial (Vo.dm) subdivisions of the nucleus oralis (Vo); the dorsomedial subdivision of the nucleus interpolaris (Vi); and laminae I—II and/or V of the nucleus caudalis (Vc) at its rostralmost level. The HRP-labeled terminals from upper and lower pulpal afferents formed a rostrocaudal column from the midlevel of Vp to the rostral tip of Vc. The label in Vp and Vo was considerably dense, but the column of terminals was interrupted at the Vpd-Vpv transition. The label in Vi and Vc was much less dense compared to that in the rostral nuclei, and the column of terminals was interrupted frequently. The representation of the upper and lower teeth in TSNC was organized in a somatotopic fashion that varied from one subdivision to the next, though their terminal zones overlapped within Vpd. The upper and lower teeth were represented in Vpv, Vo.r, Vo.dm, Vi, and Vc in a ventrodorsal, dorsoventral, lateromedial, lateromedial, and lateromedial sequence, respectively. Topographic arrangement was also noticed for the projections of pulpal afferents from the lower incisors and molars: The representations of the lower incisors and molars in Vpv, Vo.r, Vo.dm, Vi, and Vc were organized in a lateromedial, dorsoventral, ventrodorsal, ventrodorsal, and lateromedial sequence, respectively. The present results indicating sparse projections from pulpal afferents in the monkey's Vc are in good correspondence with a clinical report that trigeminal tractotomy just rostral to the obex has no significant effect on dental pain perception in patients. Furthermore, the present study indicates that projection patterns of pulpal afferents—which include the termination sites, the density of terminations between nuclei, and topographic arrangement—differ among animal species.  相似文献   

5.
Intracellular recordings from the lumbosacral dorsal horn were made to identify the axonal projection and the afferent innervation of the lateral cervical nucleus (LCN) and solitary tract nucleus (STN) on the spinal neurons of chloralose-anesthetized cats. A total of 49 neurons from laminae III-V in the spinal dorsal horn responded to stimulation of both the LCN and STN. Of these, 28 and 21 neurons responded antidromically and orthodromically to stimulation of the LCN and STN, respectively. Seven of the 28 antidromically activated neurons were followed by one or more responses synaptically driven from the LCN and/or STN. The diameter of these ascending or descending fibers was in the range of A delta fibers. The results indicate that (1) some spinal neurons, namely spinocervical tract-spinosolitary tract (SCT-SST) neurons, issue branched axons of A delta-fibers and dually project to both LCN and STN; (2) some SCT-SST neurons receive innervation from both the LCN and STN; (3) some spinal neurons and interneurons are dually innervated by descending fibers originating from both the LCN and STN, and (4) the convergence and integration between somatic and visceral sensory inputs might occur in the SCT-SST neurons.  相似文献   

6.
The distribution in the spinal cord of the trigeminal primary projections in the frog Rana ridibunda was studied by means of the anterograde transport of horseradish peroxidase (HRP). Upon entering the medulla via the single trigeminal root, a conspicuous descending tract that reaches the cervical spinal cord segments is established. This projection arises in the ophthalmic (V1), maxillary (V2), and mandibular (V3) trigeminal nerve subdivisions. In the spinal cord, only a minor somatotopic arrangement of the trigeminal fibers was observed, with the fibers arising in V3 terminating somewhat more medially than those from V1 and V2. A dense projection to the medial aspect of the spinal cord, above the central canal, primarily involves V3. Each trigeminal branch sends projections at cervical levels to the contralateral dorsal field, and those from V2 are most abundant. Bilateral experiments with HRP application show convergence of primary trigeminal and spinal afferents within the dorsal field of the spinal cord. The pattern of arrangement of the trigeminal primary afferent fibers in the spinal cord of this frog largely resembles that of amniotes. However, the organization seems simpler and the slight somatotopic distribution of V1, V2, and V3 fibers is similar to the condition in other anamniotes. © 1993 Wiley-Liss, Inc.  相似文献   

7.
A horseradish peroxidase study on the mammillothalamic tract in the rat   总被引:1,自引:0,他引:1  
K Watanabe  E Kawana 《Acta anatomica》1980,108(3):394-401
The mammillary projections to the anterior thalamic nuclei were investigated in the rat, using the horseradish peroxidase (HRP) method. Pars centralis of the medial mammillary nucleus projects to the medial portion of the ateromedial nucleus (AM). Pars medialis (Mm) of the medial mammillary nucleus sends fibers to the ipsilateral AM and sparsely to the medial portion of the contralateral side. The ventral and dorsal portions of Mm project to the anterior and posterior portions of AM, respectively. The pars latralis (Ml) and pars posterior (Mp) of the medial mammillary nucleus send fibers predominantly to the ipsilateral anteroventral nucleus and sparsely to the contralateral side. A slight difference between Ml and Mp projections was observed. The lateral mammillary nucleus projects bilaterally to the anterodorsal nucleus.  相似文献   

8.
Unit activity was recorded extracellularly from lamb's nucleus principalis and pars oralis of trigeminal nuclear complex following moderate manual stretching of individual extraocular muscles. The oral portion of the spinal trigeminal nucleus and the main sensory nucleus have been investigated by systematic exploration of the second-order neurons of the eye muscle proprioception. Such responses were somatotopically organized. In particular, each single extraocular muscle was represented along the main dorso-ventral axis in this manner: superior oblique and superior rectus in a dorsal layer; inferior rectus and inferior oblique in an intermediate layer, while the medial rectus and the lateral rectus were represented more ventrally. In a few experiments this representation was not observed, due to intermingling of the units. The topographic organization of eye muscle proprioception in the trigeminal nuclear complex described above closely corresponds to that reported by previous authors in the Gasser ganglion.  相似文献   

9.
Utilizing cyto-, myelo-, and chemoarchitecture as well as connectional criteria, the present study reveals the interstitial system of the spinal trigeminal tract (InSy-SVT) in the rat to be composed of five morphologically and functionally distinct components that are distributed within spatially restricted regions of the lateral medulla. The first component is represented by scattered interstitial cells and neuropil, which extend laterally into SVT from the superficial laminae of the medullary dorsal horn (MDH). The second component, the dorsal paramarginal nucleus (PaMd), consists of a small group of marginal (lamina I)-like neurons and neuropil situated within the dorsolateral part of SVT at the rostral pole of MDH. The third component represents a trigeminal extension of the parvocellular reticular formation (V-Rpc) into the ventromedial aspect of SVT at levels extending from rostral MDH to the caudal part of trigeminal nucleus interpolaris (Vi). The fourth component, the paratrigeminal nucleus (PaV), consists of a large accumulation of neurons and neuropil situated within the dorsal part of SVT throughout the caudal half of Vi. The fifth component is the insular trigeminal-cuneatus lateralis nucleus (iV-Cul), which is a discontinuous collection of neurons and neuropil interspersed among fibers of SVT as well as wedged between it and the spinocerebellar tract. Thalamic projection neurons are located in PaMd and V-Rpc, whereas cerebellar projecting neurons are confined to iV-Cul.  相似文献   

10.
Utilizing cyto-, myelo-, and chemoarchitecture as well as connectional criteria, the present study reveals the interstitial system of the spinal trigeminal tract (InSy-SVT) in the rat to be composed of five morphologically and functionally distinct components that are distributed within spatially restricted regions of the lateral medulla. The first component is represented by scattered interstitial cells and neuropil, which extend laterally into SVT from the superficial laminae of the medullary dorsal horn (MDH). The second component, the dorsal paramarginal nucleus (PaMd), consists of a small group of marginal (lamina I)-like neurons and neuropil situated within the dorsolateral part of SVT at the rostral pole of MDH. The third component represents a trigeminal extension of the parvocellular reticular formation (V-Rpc) into the ventromedial aspect of SVT at levels extending from rostral MDH to the caudal part of trigeminal nucleus interpolaris (Vi). The fourth component, the paratrigeminal nucleus (PaV), consists of a large accumulation of neurons and neuropil situated within the dorsal part of SVT throughout the caudal half of Vi. The fifth component is the insular trigeminal-cuneatus lateralis nucleus (iV-Cul), which is a discontinuous collection of neurons and neuropil interspersed among fibers of SVT as well as wedged between it and the spinocerebellar tract. Thalamic projection neurons are located in PaMd and V-Rpc, whereas cerebellar projecting neurons are confined to iV-Cul.  相似文献   

11.
The retrograde fluorescent labeling technique reveals that trigeminal projections to the ventroposteromedial nucleus of the thalamus (VPM) of the rat originate from the main sensory nucleus (MSN) of the trigeminal and subnuclei interpolaris (V1) and caudalis (Vc) of the spinal trigeminal nucleus. These projections are predominantly contralateral; however, the presence of a few ipsilateral labeled cells in MSN suggests an uncrossed trigeminothalamic pathway. Trigeminocerebellar fibers projecting to the paramedian lobule (PML) of the cerebellar cortex are located in Vi and caudal subnucleus oralis (Vo). This is principally an ipsilateral pathway, but several bisbenzimide-labeled cells are present in contralateral Vi. The most notable finding occurred after paired injections of Evans Blue into VPM and bisbenzimide into PML, demonstrating neurons in Vi with divergent projections to both structures. The presence of this type of projection was not found in mice (Steindler: J. Comp. Neurol. 237:155-175, 1985) and has not been reported in other species.  相似文献   

12.
The distribution of neuropeptide K (NPK), a 36-residue amidated peptide originally isolated from porcine brain, is described in the rat CNS by immunohistochemical methods. Antibodies were generated in rabbits to N-terminus and C-terminus regions of the peptide and the distribution of immunoreactive cell bodies and fibers was mapped in colchicine-treated and normal rat brains. Major areas of cell body staining included the medial habenular nucleus, the ventromedial nucleus of the hypothalamus, the interpeduncular nucleus, the lateral dorsal tegmental nucleus, the nucleus raphe pallidus, and the nucleus of the solitary tract. Some of the areas of dense NPK-fiber immunoreactivity included the ventral pallidum, the caudate-putamen, certain areas of the hypothalamus, the central and medial amygdaloid nuclei, the entopeduncular nucleus, the habenular nuclei, the substantia nigra pars reticulata, the caudal part of the spinal nucleus of the trigeminal nerve, the nucleus of the solitary tract and the dorsal horn of the spinal cord. A striking similarity exists between this pattern of immunoreactive staining and that described for substance P, suggesting that the tachykinin systems do not exist independently in the brain. The possible roles for multiple tachykinins in the brain are discussed.  相似文献   

13.
Projections from the trigeminal complex to paramedian lobule (PML) were studied in the tree shrew (Tupaia glis) by means of retrograde transport of horseradish peroxidase (HRP). Neurons which project to both dorsal and ventral folia of PML are located primarily in those areas of the trigeminal nuclear complex interpreted as nucleus interpolaris (Vi) and caudal areas of the nucleus oralis (Vo). The majority of HRP-labeled neurons lie in ventral and ventrolateral regions of Vi/Vo. No HRP-reactive cells are present in the principal (Vp), mesencephalic, or motor nuclei nor in nucleus caudalis or rostral portions of oralis. The majority of trigeminocerebellar (TC) cells are found in ipsilateral Vi; however, sparse numbers of labeled somata are present in this subnucleus on the contralateral side. Within Vi/Vo, small fusiform and medium-and large-sized multipolar neurons contain HRP-reaction product. Large multipolar cells are found primarily in ventrolateral portions of Vi/Vo, while medium and small neurons are scattered throughout the ventral half of the nucleus. Small-sized neurons are also present dorsally within Vi/Vo. Axons of labeled TC cells course laterally through the spinal trigeminal tract, enter medial aspects of the restiform body, and arch dorsally into the cerebellum.  相似文献   

14.
Retrograde and transganglionic transport of horseradish peroxidase (HRP) was used to investigate the neurons innervating the upper and the lower lips and their central projections in the rat. Both the upper and the lower lips were observed to be innervated by a very large number of trigeminal sensory neurons, with their cell bodies located in the maxillary and the mandibular parts of the trigeminal ganglion, respectively. The central projections of neurons innervating the upper lip formed a long continuous column starting rostrally at midlevels of the trigeminal main sensory nucleus (5P) and extending caudally through the CI dorsal horn, with occasional fibers reaching the C3 segment. The heaviest projections appeared in the middle portions of 5P and nucleus interpolaris (51), as well as in the rostral part of nucleus caudalis (5C). A small but consistent projection to the solitary tract nucleus, originating from cells in the inferior vagal ganglion, was observed in the upper-lip experiments. The central projections from neurons innervating the lower lip also appeared as a long column located dorsally or dorsomedially to the projections from the upper lip. The most prominent projections from the lower lip were located in the caudal part of 5P, the middle part of 5I, and the caudal two-thirds of 5C. Sparse projections could be traced as far caudally as C4. At 5C and cervical levels, some labeling appeared contralaterally in the same location as on the ipsilateral side.  相似文献   

15.
Long ascending fiber systems were investigated in the spinal cord of a teleost fish, Gnathonemus petersii. Concomitant results of Fink-Heimer degeneration tracing as well as CaBP28K immunohistochemical labelling demonstrate the existence of a well defined direct pathway from the very lowest spinal level to the caudal lobe of the cerebellum. HRP retrograde labelling shows that this pathway originates in a cellular column located in the most ventral part of the lateral column next to the lateral extremity of the ventral horn. From each spinal segment, the large axons of these cells gather and form a strip shaped tract at the periphery of the lateral column immediately dorsal to the cell column from which they originate. The spinal course of these fibers is ipsilateral; they give off a large number of collaterals to the lateral reticular nucleus. Bypassing the trigeminal motor nucleus, the lateral column tract courses dorsally to the paratrigeminal command associated nucleus between the lateral lemniscus and the nucleus preeminentialis and with a ventro-dorsally oriented large loop, turns in the caudal direction and penetrates into the cerebellar caudal lobe. Running caudally in the dorsal granular layer of the caudal lobe, it shifts more and more medially and crosses the midline whilst decussating with the contralateral tract on the dorsal margin of the molecular layer of the caudal lobe. Finally, the tract splits off and terminates throughout the granular layer of the caudal lobe. The main characteristics of this pathway are similar to those of the ventral spinocerebellar tract of higher vertebrates; it conveys information from all spinal levels directly to the contralateral cerebellum. However, it does not seem to receive direct synaptic input from the periphery, since projection of the dorsal root fibers appears to be limited to the dorsal ipsilateral half of the spinal cord. The appearance of such a pathway in a teleost fish is probably related to the existence of a well developed proprioceptive system in this species.  相似文献   

16.
A novel pituitary protein called 7B2 was localized in rat pituitary and brain by immunocytochemistry (unlabeled antibody technique). Immunoreactive material was present in the secretory cells of anterior and intermediate lobes and in neural structures of the posterior lobe of the hypophysis. 7B2-immunoreactive neurons were evident within the hypothalamus in the supraoptic nucleus, paraventricular nucleus (magnocellular and parvocellular parts), and lateral hypothalamus. Immunoreactive nerve fibers were seen within the internal and external zone of the median eminence. Among extrahypothalamic regions, the substantia nigra, dorsal tegmental nucleus, cuneiform nucleus, dorsal parabrachial nucleus, spinal tract trigeminal nerve, interior olive, solitary nucleus, and layers I and II of the spinal cord contained 7B2-immunoreactive material. This anatomical distribution suggests a role for 7B2 in endocrine and autonomic functions.  相似文献   

17.
Intersubnuclear connections within the rat trigeminal brainstem complex   总被引:1,自引:0,他引:1  
Prior intracellular recording and labeling experiments have documented local-circuit and projection neurons in the spinal trigeminal (V) nucleus with axons that arborize in more rostral and caudal spinal trigeminal subnuclei and nucleus principalis. Anterograde tracing studies were therefore carried out to assess the origin, extent, distribution, and morphology of such intersubnuclear axons in the rat trigeminal brainstem nuclear complex (TBNC). Phaseolus vulgaris leucoagglutinin (PHA-L) was used as the anterograde marker because of its high sensitivity and the morphological detail provided. Injections restricted to TBNC subnucleus caudalis resulted in dense terminal labeling in each of the more rostral ipsilateral subnuclei. Subnucleus interpolaris projected ipsilaterally and heavily to magnocellular portions of subnucleus caudalis, as well as subnucleus oralis and nucleus principalis. Nucleus principalis, on the other hand, had only a sparse projection to each of the caudal ipsilateral subnuclei. Intersubnuclear axons most frequently traveled in the deep bundles within the TBNC, the V spinal tract, and the reticular formation. They gave rise to a number of circumscribed, highly branched arbors with many boutons of the terminal and en passant types. Retrograde single- or multiple-labeling experiments assessed the cells giving rise to TBNC intersubnuclear collaterals. Horseradish peroxidase (HRP) and/or fluorescent tracer injections into the thalamus, colliculus, cerebellum, nucleus principalis, and/or subnucleus caudalis revealed large numbers of neurons in subnuclei caudalis, interpolaris, and oralis projecting to the region of nucleus principalis. Cells projecting to more caudal spinal trigeminal regions were most numerous in subnuclei interpolaris and oralis. Some cells in lamina V of subnucleus caudalis and in subnuclei interpolaris and oralis projected to thalamus and/or colliculus, as well as other TBNC subnuclei. Such collateral projections were rare in nucleus principalis and more superficial laminae of subnucleus caudalis. TBNC cells labeled by cerebellar injections were not double-labeled by tracer injections into the thalamus, colliculus, or TBNC. These findings lend generality to currently available data obtained with intracellular recording and HRP labeling methods, and suggest that most intersubnuclear axons originate in TBNC local-circuit neurons, though some originate in cells that project to midbrain and/or diencephalon.  相似文献   

18.
The organization of the projection from the pretectal region to the inferior olive in the cat was studied with autoradiographic and horseradish peroxidase (HRP) methods. After injections of HRP into the olive in six cats, cells were labeled ipsilaterally in the anterior pretectal nucleus (NPA), the posterior pretectal nucleus (NPP), the nucleus of the optic tract (NOT), and the dorsal terminal nucleus of the accessory optic tract (DTN). In three experiments, tritiated amino acids were injected into those parts of the pretectal region which contained labeled cells in the HRP experiments, and the projections to the olive were plotted. Both NPA and NPP projected to the rostral half of the dorsal accessory olive, the rostromedial margin of the ventral lamella, and the lateral part of the ventrolateral outgrowth. NOT projected to the caudal half of the dorsal cap, while DTN projected to both the dorsal cap and nucleus beta. The projections are entirely ipsilateral.  相似文献   

19.
The afferent and efferent components of the facial nerve were traced within the brain stem of Rana catesbeiana, using three different neuroanatomical techniques. Primary afferent fibers could be traced to the spinal tract of trigeminal nerve and to fasciculus solitarius as far caudally as the first or second spinal segment, using silver degeneration methods. Cobalt filling of of the entire nerve showed the same distribution of afferent fibers, as well as the filling of the cells within the mesencephalic nucleus of trigeminal, indicating the origin of a proprioceptive component of the facial nerve. Cobalt iontophoresis and horseradish perioxidase experiments showed that the motor nucleus of the facial nerve was located just ventral to the fourth ventricle, and caudal to the motor nucleus of trigeminal. The distribution of afferent fibers to fasciculus solitarius and the spinal tract of trigeminal is similar in some respects to the distribution of afferent fibers from the trigeminal and vagal nerves in the bullfrog. The afferent fibers from the three cranial nerves are found as far caudally in the brain stem as the second spinal segment.  相似文献   

20.
Prior studies have documented a trigeminal (V) mandibular primary afferent projection to the dorsomedial portion of the contralateral medullary and cervical dorsal horns in cat, hamster, and rat. We now report the existence of a much more substantial V ophthalmic primary afferent projection to the ventrolateral portion of contralateral medullary and cervical dorsal horns in rat. Horseradish peroxidase (HRP) injections into the V ganglion or V brainstem complex anterogradely labeled a fascicle of primary afferent axons that exited the caudal ventrolateral V spinal tract to form a rostrocaudally continuous, transversely oriented, V primary afferent decussation. These fibers terminated most heavily in laminae III-V of the ventrolateral dorsal horn in contralateral caudal medulla and the first and second cervical segments. Retrograde tracing with diamidino yellow (DY) or fluorogold and anterograde tracing with Phaseolus vulgaris leucoagglutinin also demonstrated a substantial commissural projection of central origin in medullary dorsal horn laminae I-VII. The latter projection had a more diffuse trajectory and termination pattern than that of the V primary afferent decussation. Unilateral HRP injections into medullary and cervical dorsal horns also retrogradely labeled V primary afferent collaterals contralateral to the injection site in corresponding regions of dorsal horn, and also in ventromedial interpolaris, oralis, and principalis, rostral to their decussation. Axons (1.5 +/- 0.8 microns mean diameter; 0.4-3.9 microns range) therefore terminated both ipsi- and contralateral to their cells of origin. These HRP injections also labeled an average of 40.4 +/- 13.0 V ganglion cells (mean +/- SD, corrected for split somata) in dorsomedial, ophthalmic regions of the contralateral ganglion. Their mean diameter was slightly larger than that of cells labeled ipsilaterally (29.9 vs. 26.3 microns). Double-labeling studies assessed possible ophthalmic receptor surfaces innervated by centrally crossing primary afferents. DY was injected into right medullary and cervical dorsal horns, and HRP was applied to either the left cornea, the ethmoid nerve, or the dura overlying cerebral cortex. Though DY labeled from 75 to 125 left ganglion cells per animal, no cells were double-labeled. All of these findings suggest that nociceptive-specific ganglion cells are not a source of the crossed ophthalmic primary afferent projection. Unilateral transection of the infraorbital nerve on the day of birth did not alter the crossed primary afferent projection to the partially deafferented side of the brainstem. This is further evidence of an absence of central sprouting in spared V primary afferents following neonatal V deafferentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号