首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高琼  黄海辉 《遗传》2015,37(5):458-464
艰难梭菌(Clostridium difficile)是医疗保健相关性腹泻最主要的病原菌。2002年起欧美地区艰难梭菌感染发病率和病死率均明显增高,耐药艰难梭菌的出现和传播更给临床治疗和预防带来了挑战。绝大多数临床分离菌对甲硝唑及万古霉素仍呈高度敏感,但已有异质性耐药或最低抑菌浓度上升的报道;对红霉素和莫西沙星等其他抗菌药物的耐药率在不同国家和地区则有较大差异。艰难梭菌对甲硝唑或万古霉素敏感性下降产生的耐药机制尚不明确,而对红霉素、氟喹诺酮类、四环素和利福霉素形成的耐药机制主要是因为作用靶点发生了改变。文章简述了近年来国际上艰难梭菌耐药性及耐药机制方面的研究进展。  相似文献   

2.
Microbiology and drug resistance mechanisms of fully resistant pathogens   总被引:3,自引:0,他引:3  
The acquisition of vancomycin resistance by Gram-positive bacteria and carbapenem resistance by Gram-negative bacteria has rendered some hospital-acquired pathogens impossible to treat. The resistance mechanisms employed are sophisticated and very difficult to overcome. Unless alternative treatment regimes are initiated soon, our inability to treat totally resistant bacteria will halt other developments in medicine. In the community, Gram-positive bacteria responsible for pneumonia could become totally resistant leading to increased mortality from this common infection, which would have a more immediate impact on our current lifestyles.  相似文献   

3.
The mechanism of synergy between vancomycin and penicillin, as well as other beta-lactam antibiotics, was examined in a penicillin-resistant E. faecium (D366) expressing an inducible low-level resistance to vancomycin. It was demonstrated that penicillin per se was not able to reduce the inducible expression of the 39.5-kDa protein (VANB) or the carboxypeptidase activity which are involved in the mechanism of vancomycin resistance of this strain. Assays of competition between 3H-benzylpenicillin and diverse beta-lactam antibiotics suggested as the most likely explanation of the synergy that, once vancomycin resistance has been induced, the high-molecular mass penicillin-binding proteins (PBPs), and possibly PBP1 in particular, which have a high affinity for beta-lactam antibiotics, take over the role of the low-affinity PBP5 which is, in the non-induced strain, responsible for beta-lactam resistance.  相似文献   

4.
The non-pathogenic, non-glycopeptide-producing actinomycete Streptomyces coelicolor carries a cluster of seven genes (vanSRJKHAX) that confers inducible, high level resistance to vancomycin. The vanK gene has no counterpart in previously characterized vancomycin resistance clusters, yet vanK is required for vancomycin resistance in S. coelicolor. VanK belongs to the Fem family of enzymes, which add the branch amino acid(s) to the stem pentapeptide of peptidoglycan precursors. Upon exposure to vancomycin, the VanRS two-component system switches on expression of all seven van genes, and the VanHAX enzymes reprogram the cell wall such that precursors terminate D-Ala-D-lactate (Lac) rather than D-Ala-D-Ala, thus conferring resistance to vancomycin, which only binds D-Ala-D-Ala-containing precursors. Here we provide biochemical and genetic evidence that VanK is required for vancomycin resistance because the constitutively expressed FemX enzyme, encoded elsewhere on the chromosome, cannot recognize D-Lac-containing precursors as a substrate, whereas VanK can. Consistent with this view, D-Lac-containing precursors carrying the Gly branch are present in the wild type transiently exposed to vancomycin but are undetectable in a vanK mutant treated in the same way. Further, femX null mutants are viable in the presence of vancomycin but die in its absence. Because only VanK can recognize D-Lac-containing precursors, vancomycin-induced expression of VanHAX in a vanK mutant is lethal, and so vanK is required for vancomycin resistance.  相似文献   

5.
【目的】通过前期体外诱导获得耐万古霉素金黄色葡萄球菌,从基因突变方面对万古霉素耐药性菌株进行研究。【方法】通过低浓度万古霉素逐步诱导13株敏感性金黄色葡萄球菌,用琼脂稀释法和E-test法检测所有菌株对万古霉素的耐药性(最低抑菌浓度,MIC),PCR扩增与万古霉素耐药性密切相关的4个重要基因:rpo B、vra S、gra R和gra S,并测序分析,比较诱导前后不同菌株的基因序列。【结果】通过60 d的体外诱导实验,13株对万古霉素敏感性金黄色葡萄球菌中有6株被诱导为中介耐药金黄色葡萄球菌(Vancomycin intermediate Staphylococcus aureus,VISA),7株菌被诱导之后对万古霉素仍处于敏感状态,MIC4 mg/L。检测诱导前后所有菌株的rpo B、vra S、gra R和gra S基因发现:有3株VISA的rpo B基因同时有L466S和H481N的突变,gra S基因同时有R232K的突变。【结论】对万古霉素敏感的金黄色葡萄球菌经过较长时间的体外诱导可发展为VISA。在已检测的重要基因中,rpo B和gra S的突变对耐药性的发展很可能起关键作用,而vra S和gra R对这一过程没有显著影响。  相似文献   

6.
Staphylococcal infections are often associated with the use of implantable medical devices. Such infections are difficult to treat because of biofilm resistance to antibiotics and are common causes of morbidity and mortality. Graft infections were established in the back subcutaneous tissue of adult male Wistar rats by implantation of Dacron prostheses followed by topical inoculation with 2x10(7) colony-forming units of bacterial strains. The study included a control group, a contaminated group that did not receive any antibiotic prophylaxis and five contaminated groups that received intraperitoneal vancomycin, Pal-Lys-Lys-NH(2) and Pal-Lys-Lys-soacked graft, and vancomycin plus Pal-Lys-Lys-NH(2) or Pal-Lys-Lys-soacked graft, respectively. The infection was evaluated by using sonication and quantitative agar culture. Moreover, an in vitro antibiotic susceptibility assay for Staphylococcus aureus biofilms was performed to elucidate the same activity. When tested alone, vancomycin and lipopeptides showed comparable efficacies. All combinations showed efficacies significantly higher than that of each single compound. Vancomycin combined to Pal-Lys-Lys-NH(2) exerted the strongest anti-staphylococcal efficacies. The in vitro studies showed, that MIC and MBC values for vancomycin were lower in presence of lipopeptides. They reduce the bacterial load and to enhance the effect of vancomycin in the prevention of vascular graft staphylococcal infections.  相似文献   

7.
Vancomycin and related glycopeptides are drugs of last resort for the treatment of severe infections caused by Gram‐positive bacteria such as Enterococcus species, Staphylococcus aureus, and Clostridium difficile. Vancomycin was long considered immune to resistance due to its bactericidal activity based on binding to the bacterial cell envelope rather than to a protein target as is the case for most antibiotics. However, two types of complex resistance mechanisms, each comprised of a multi‐enzyme pathway, emerged and are now widely disseminated in pathogenic species, thus threatening the clinical efficiency of vancomycin. Vancomycin forms an intricate network of hydrogen bonds with the d ‐Ala‐d ‐Ala region of Lipid II, interfering with the peptidoglycan layer maturation process. Resistance to vancomycin involves degradation of this natural precursor and its replacement with d ‐Ala‐d ‐lac or d ‐Ala‐d ‐Ser alternatives to which vancomycin has low affinity. Through extensive research over 30 years after the initial discovery of vancomycin resistance, remarkable progress has been made in molecular understanding of the enzymatic cascades responsible. Progress has been driven by structural studies of the key components of the resistance mechanisms which provided important molecular understanding such as, for example, the ability of this cascade to discriminate between vancomycin sensitive and resistant peptidoglycan precursors. Important structural insights have been also made into the molecular evolution of vancomycin resistance enzymes. Altogether this molecular data can accelerate inhibitor discovery and optimization efforts to reverse vancomycin resistance. Here, we overview our current understanding of this complex resistance mechanism with a focus on the structural and molecular aspects.  相似文献   

8.
Abstract Bacitracin and other antibiotics that inhibit late stages in peptidoglycan biosynthesis induce vancomycin resistance in a high-level, inducibly vancomycin-resistant strain of Enterococcus faecium . Exposure to bacitracin led to synthesis of the lactate-containing UDP-MurNAc-pentadepsipeptide precursor required for vancomycin resistance. These findings indicate that inhibition of peptidoglycan biosynthesis can lead to induction of vancomycin resistance and raise the possibility that multiple signals may serve to induce resistance.  相似文献   

9.
We studied the usefulness of flow cytometry for detection of vancomycin resistance in Enterococcus faecalis by direct binding of commercially available fluorescent vancomycin to cells obtained from culture. The cells were stained with Vancomycin@FL, sonicated and additionally stained with propidium iodide (PI). Regarding to inductive mechanism of vanA-mediated vancomycin resistance, resistant reference strain was also pre-incubated with vancomycin. PI staining divided cells into two subpopulations. There were significantly lower mean FL1 fluorescence values and mean fluorescence per particle (FL1/FSC) in reference vancomycin-resistant strain than in reference and clinical strains sensitive to this antibiotic. Pre-incubation with vancomycin of vancomycin resistant enterococci strain modified Vancomycin@FL binding, however, cells remained easy to differ. We have demonstrated new, quick and sensitive method for detection of vancomycin resistant strains of E. faecalis. The study proved possibility of detection of vancomycin resistance caused by presence of vanA gene by staining cells with Vancomycin@FL. Flow cytometry approach study of E. faecalis vancomycin resistance by detection of Vancomycin@FL binding to the bacterial cells.  相似文献   

10.
The drugs of choice used to treat C. diffcile associated diarrhoea (CDAD) are metronidazole and vancomycin. C. difficile strains isolated in most laboratories are susceptible to metronidazole and vancomycin. Communication about emergence of antimicrobial resistance among C. difficile strains in some countries to metronidazole and intermediate resistance to vancomycin are alarming. This study was performed to determine the susceptibility to metronidazole and vancomycin of 140 C. difficile strains isolated from patients with CDAD hospitalised in academic hospital between 1999-2002. Resistance to metronidazole and vancomycin was not observed.  相似文献   

11.
12.
This study describes coagulase-negative staphylococcal (CoNS) infective endocarditis (IE) epidemiology at our institution, the antibiotic susceptibility profile, and the influence of vancomycin minimum inhibitory concentration (MIC) on patient outcomes. One hundred and three adults with definite IE admitted to an 850-bed tertiary care hospital in Barcelona from 1995-2008 were prospectively included in the cohort. We observed that CoNS IE was an important cause of community-acquired and healthcare-associated IE; one-third of patients involved native valves. Staphylococcus epidermidis was the most frequent species, methicillin-resistant in 52% of patients. CoNS frozen isolates were available in 88 patients. Vancomycin MICs of 2.0 μg/mL were common; almost all cases were found among S. epidermidis isolates and did not increase over time. Eighty-five patients were treated either with cloxacillin or vancomycin: 38 patients (Group 1) were treated with cloxacillin, and 47 received vancomycin; of these 47, 27 had CoNS isolates with a vancomycin MIC <2.0 μg/mL (Group 2), 20 had isolates with a vancomycin MIC ≥2.0 μg/mL (Group 3). One-year mortality was 21%, 48%, and 65% in Groups 1, 2, and 3, respectively (P=0.003). After adjusting for confounders and taking Group 2 as a reference, methicillin-susceptibility was associated with lower 1-year mortality (OR 0.12, 95% CI 0.02-0.55), and vancomycin MIC ≥2.0 μg/mL showed a trend to higher 1-year mortality (OR 3.7, 95% CI 0.9-15.2; P=0.069). Other independent variables associated with 1-year mortality were heart failure (OR 6.2, 95% CI 1.5-25.2) and pacemaker lead IE (OR 0.1, 95%CI 0.02-0.51). In conclusion, methicillin-resistant S.epidermidis was the leading cause of CoNS IE, and patients receiving vancomycin had higher mortality rates than those receiving cloxacillin; mortality was higher among patients having isolates with vancomycin MICs ≥2.0 μg/mL.  相似文献   

13.
Nosocomial device-related infections with Gram-positive cocci and their resistance to vancomycin are of increasing occurrence. We examined clinical isolates of relatively avirulent coagulase-negative staphylococci for their resistance to vancomycin and for their capabilities to adhere in vitro to medical grade silicone. Vancomycin resistance was found in 9 of 20 isolates, but there was no correlation between adherence capacity to silicone in the absence of vancomycin and vancomycin resistance for a given strain. Vancomycin in the medium, adsorbed to the surface of medical grade silicone or adsorbed on nongrowing cells, reduced adherence of representative Staphylococcus epidermidis to medical grade silicone. Received: 27 November 2000 / Accepted: 10 January 2001  相似文献   

14.
The study investigated the effect of antibiotic combinations against 20 clinical isolates of A. baumannii (seven colistin-resistant and 13 colistin-susceptible) with different resistance mechanisms. Clinical data, treatment, and patient mortality were evaluated. The following methods were used: MIC, PCRs, and outer membrane protein (OMP) analysis. Synergy was investigated using the checkerboard and time-kill methods. Clonality was evaluated by PFGE. Based on clonality, the whole genome sequence of six A. baumannii isolates was analyzed. All isolates were resistant to meropenem, rifampicin, and fosfomycin. OXA-23 and OXA-143 were the most frequent carbapenemases found. Four isolates showed loss of a 43kDa OMP. The colistin-susceptible isolates belonged to different clones and showed the highest synergistic effect with fosfomycin-amikacin. Among colistin-resistant isolates, the highest synergistic effect was observed with the combinations of colistin-rifampicin followed by colistin-vancomycin. All colistin-resistant isolates harbored blaOXA-23-like and belonged to CC113. Clinical and demographic data were available for 18 of 20 patients. Fourteen received treatment and eight patients died during treatment. The most frequent site of infection was the blood in 13 of 14 patients. Seven patients received vancomycin plus an active drug against A. baumannii; however, mortality did not differ in this group. The synergistic effect was similar for colistin-susceptible isolates of distinct clonal origin presenting with the same resistance mechanism. Overall mortality and death during treatment was high, and despite the high synergism in vitro with vancomycin, death did not differ comparing the use or not of vancomycin plus an active drug against A. baumannii.  相似文献   

15.
Vancomycin resistance has recently been recognized among clinical isolates of enterococci. Resistance is inducible, and associated with production of a novel 39 kDa membrane protein. The mechanism by which exposure to vancomycin, which does not penetrate the cell membrane, induces resistance is unknown. In the vancomycin resistant strain Enterococcus faecium 228, resistance was also inducible by moenomycin, suggesting that inhibition of the transglycosylation step in peptidoglycan synthesis may be required for induction of resistance. Cytoplasmic pools of peptidoglycan precursors were increased after exposure to vancomycin or moenomycin, representing a potential means for regulation of induction.  相似文献   

16.
A chemically generated mutant of Staphylococcus aureus RN4220, GC6668, was isolated that had a fourfold increase in resistance to vancomycin. This phenotype reverted back to susceptibility by insertional mutagenesis with Tn917. In a selected set of revertants, Tn917 insertion was mapped to a unique chromosomal region upstream of mprF, a recently described gene that determines staphylococcal resistance to several host defense peptides. The genetic linkage between the vancomycin susceptibility and Tn917 insertion was then confirmed by transduction backcrosses into both GC6668 and GISA isolates, MER-S12 and HT2002 0127. Northern blot analysis, insertional inactivation and complementation experiments showed that mprF mediates vancomycin susceptibility in S. aureus. The inactivation of mprF by Tn917 insertion in HT2002 0127 caused a significant increase in the binding of vancomycin to the cell membranes. This observation serves as a likely mechanism of the increased vancomycin susceptibility associated with mprF inactivation.  相似文献   

17.
AIMS: To investigate whether dehydroepiandosterone (DHEA), an androgen present throughout life, alters the response of Staphylococcus aureus clinical isolates to vancomycin. METHODS AND RESULTS: DHEA in physiologically relevant concentrations (0.1, 0.5, 1.0 and 5.0 micromol l(-1)) was tested for its effect on methicillin-sensitive S. aureus (MSSA, n = 53) and methicillin-resistant S. aureus (MRSA, n = 73) response to vancomycin using standard protocols. Mutant selection was determined by serial transfer of selected isolates (n = 5). DHEA-mediated at least a fourfold increase in vancomycin MIC for 42% of MSSA and 21% of MRSA. For five of the isolates (0.1 and 0.5 micromol l(-1) DHEA) the MIC was increased to levels (8 microg ml(-1)) defined as vancomycin-intermediate resistance. CONCLUSION: Resistance was detected only in the presence of DHEA, and was not related to altered generation time, indicating induction of phenotypic resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings require further investigation to determine what role DHEA plays in clinical vancomycin treatment failure that has been reported in the absence of vancomycin genotypic resistance or heteroresistance.  相似文献   

18.
Staphylococcus aureus is the leading cause of many human infectious diseases. Besides infectious dangers, S. aureus is well-known for the quickly developed drug resistance. Although great efforts have been made, mechanisms underlying the antibiotic effects of S. aureus are still not well clarified. Recently, reports have shown that oxidative stress connects with bactericidal antibiotics [Dwyer et al. (2009) Curr. Opin. Microbiol. 12, 482–489]. Based on this point, we demonstrate that reactive oxygen species (ROS) induced by sublethal vancomycin may be partly responsible for the antibiotic resistance in heterogeneous vancomycin resistant S. aureus (hVRSA). Sublethal vancomycin treatment may induce protective ROS productions in hVRSA, whereas reduction in ROS level in hVRSA strains may increase their vancomycin susceptibility. Moreover, low dose of ROS in VSSA (vancomycin susceptible S. aureus) strains may promote their survival under vancomycin conditions. Our findings reveal that modest ROS generation may be protective for vancomycin resistance in hVRSA. These results recover novel insights into the relationship between oxidative stress and bacterial resistance, which has important applications for further use of antibiotics and development of therapeutics strategies for hVRSA.  相似文献   

19.
The vancomycin-resistant enterococci GV1, GV2 and GV3, which were isolated from droppings from broiler farms in Japan have been characterized as VanA-type VRE, which express high-level vancomycin resistance (256 or 512 microg ml(-1), MIC) and low-level teicoplanin resistance (1 or 2 microg ml(-1), MIC). The vancomycin resistances were encoded on plasmids. The vancomycin resistance conjugative plasmid pMG2 was isolated from the GV2 strain. The VanA determinant of pMG2 showed the same genetic organization as that of the VanA genes encoded on the representative transposon Tn1546, which comprises vanRSHAXYZ. The nucleotide sequences of all the genes, except the gene related to the vanS gene on Tn1546, were completely identical to the genes encoded on Tn1546. Three amino acid substitutions in the N-terminal region of the deduced VanS were detected in the nucleotide sequence of vanS encoded on pMG2. There were also three amino acid substitutions in the vanS gene of the GV1 and GV3 strains in the same positions as in the vanS gene of pMG2. Vancomycin induced the increased teicoplanin resistance in these strains.  相似文献   

20.
The drug of choice used to treat Clostridium difficile-associated diarroea (CDAD) are metronidazole and vancomycin. Information about emergence of antimicrobial resistance among C. difficile strains to metronidazole and intermediate resistance to vancomycin in some countries are alarming. This study was performed to determine the susceptibility to metronidazole and vancomycin of 193 C. difficile strains isolated in our diagnostic laboratory between year 1998 and 2003 from patients adults and children suffering from CDAD. Among these strains, 142 produced toxin A and B (TcdA(+)TcdB(+)), 43 only B (TcdA(-)TcdB(+)) and 8 were nontoxigenic. We have not observed any differences in susceptibility to metronidazole and vancomycin between all C. difficile strains under investigation (toxinogenic and non-toxinogenic). Resistance to metronidazole and vancomycin was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号