首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen transport to exercising leg in chronic hypoxia   总被引:4,自引:0,他引:4  
Residence at high altitude could be accompanied by adaptations that alter the mechanisms of O2 delivery to exercising muscle. Seven sea level resident males, aged 22 +/- 1 yr, performed moderate to near-maximal steady-state cycle exercise at sea level in normoxia [inspired PO2 (PIO2) 150 Torr] and acute hypobaric hypoxia (barometric pressure, 445 Torr; PIO2, 83 Torr), and after 18 days' residence on Pikes Peak (4,300 m) while breathing ambient air (PIO2, 86 Torr) and air similar to that at sea level (35% O2, PIO2, 144 Torr). In both hypoxia and normoxia, after acclimatization the femoral arterial-iliac venous O2 content difference, hemoglobin concentration, and arterial O2 content, were higher than before acclimatization, but the venous PO2 (PVO2) was unchanged. Thermodilution leg blood flow was lower but calculated arterial O2 delivery and leg VO2 similar in hypoxia after vs. before acclimatization. Mean arterial pressure (MAP) and total peripheral resistance in hypoxia were greater after, than before, acclimatization. We concluded that acclimatization did not increase O2 delivery but rather maintained delivery via increased arterial oxygenation and decreased leg blood flow. The maintenance of PVO2 and the higher MAP after acclimatization suggested matching of O2 delivery to tissue O2 demands, with vasoconstriction possibly contributing to the decreased flow.  相似文献   

2.
Mechanisms of ventilatory acclimatization to chronic hypoxia remain unclear. To determine whether the sensitivity of peripheral chemoreceptors to hypoxia increases during acclimatization, we measured ventilatory and carotid sinus nerve responses to isocapnic hypoxia in seven cats exposed to simulated altitude of 15,000 ft (barometric pressure = 440 Torr) for 48 h. A control group (n = 7) was selected for hypoxic ventilatory responses matched to the preacclimatized measurements of the experimental group. Exposure to 48 h of hypobaric hypoxia produced acclimatization manifested as decrease in end-tidal PCO2 (PETCO2) in normoxia (34.5 +/- 0.9 Torr before, 28.9 +/- 1.2 after the exposure) as well as in hypoxia (28.1 +/- 1.9 Torr before, 21.8 +/- 1.9 after). Acclimatization produced an increase in hypoxic ventilatory response, measured as the shape parameter A (24.9 +/- 2.6 before, 35.2 +/- 5.6 after; P less than 0.05), whereas values in controls remained unchanged (25.7 +/- 3.2 and 23.1 +/- 2.7; NS). Hypoxic exposure was associated with an increase in the carotid body response to hypoxia, similarly measured as the shape parameter A (24.2 +/- 4.7 in control, 44.5 +/- 8.2 in acclimatized cats). We also found an increased dependency of ventilation on carotid body function (PETCO2 increased after unilateral section of carotid sinus nerve in acclimatized but not in control animals). These results suggest that acclimatization is associated with increased hypoxic ventilatory response accompanied by enhanced peripheral chemoreceptor responsiveness, which may contribute to the attendant rise in ventilation.  相似文献   

3.
Acclimatization to hypoxia has minimal effect on maximal O2 uptake (Vo2 max). Prolonged hypoxia shows reductions in cardiac output (Q), maximal heart rate (HR-max), myocardial beta-adrenoceptor (beta-AR) density, and chronotropic response to isoproterenol. This study tested the hypothesis that exercise training (ET), which attenuates beta-AR downregulation, would increase HRmax and Q of acclimatization and result in higher Vo2 max. After 3 wk of ET, rats lived at an inspired Po2 of 70 Torr for 10 days (acclimatized trained rats) or remained in normoxia, while both groups continued to train in normoxia. Controls were sedentary acclimatized and nonacclimatized rats. All rats exercised maximally in normoxia and hypoxia (inspired Po2 of 70 Torr). Myocardial beta-AR density and the chronotropic response to isoproterenol were reduced, and myocardial cholinergic receptor density was increased after acclimatization; all of these receptor changes were reversed by ET. Normoxic Vo2 max (in ml.min-1.kg-1) was 95.8 +/- 1.0 in acclimatized trained (n = 6), 87.7 +/- 1.7 in nonacclimatized trained (P < 0.05, n = 6), 74.2 +/- 1.4 in acclimatized sedentary (n = 6, P < 0.05), and 72.5 +/- 1.2 in nonacclimatized sedentary (n = 8; P > 0.05 acclimatized sedentary vs. nonacclimatized sedentary). A similar distribution of Vo2 max values occurred in hypoxic exercise. Q was highest in trained acclimatized and nonacclimatized, intermediate in nonacclimatized sedentary, and lowest in acclimatized sedentary groups. ET preserved Q in acclimatized rats thanks to maintenance of HRmax as well as of maximal stroke volume. Q preservation, coupled with a higher arterial O2 content, resulted in the acclimatized trained rats having the highest convective O2 transport and Vo2 max. These results show that ET attenuates beta-AR downregulation and preserves Q and Vo2 max after acclimatization, and support the idea that beta-AR downregulation partially contributes to the limitation of Vo2 max after acclimatization in rats.  相似文献   

4.
We determined the effects of carotid body excision (CBX) on eupneic ventilation and the ventilatory responses to acute hypoxia, hyperoxia, and chronic hypoxia in unanesthetized rats. Arterial PCO2 (PaCO2) and calculated minute alveolar ventilation to minute metabolic CO2 production (VA/VCO2) ratio were used to determine the ventilatory responses. The effects of CBX and sham operation were compared with intact controls (PaCO2 = 40.0 +/- 0.1 Torr, mean +/- 95% confidence limits, and VA/VCO2 = 21.6 +/- 0.1). CBX rats showed 1) chronic hypoventilation with respiratory acidosis, which was maintained for at least 75 days after surgery (PaCO2 = 48.4 +/- 1.1 Torr and VA/VCO2 = 17.9 +/- 0.4), 2) hyperventilation in response to acute hyperoxia vs. hypoventilation in intact rats, 3) an attenuated increase in VA/VCO2 in acute hypoxemia (arterial PO2 approximately equal to 49 Torr), which was 31% of the 8.7 +/- 0.3 increase in VA/VCO2 observed in control rats, 4) no ventilatory acclimatization between 1 and 24 h hypoxia, whereas intact rats had a further 7.5 +/- 1.5 increase in VA/VCO2, 5) a decreased PaCO2 upon acute restoration of normoxia after 24 h hypoxia in contrast to an increased PaCO2 in controls. We conclude that in rats carotid body chemoreceptors are essential to maintain normal eupneic ventilation and to the process of ventilatory acclimatization to chronic hypoxia.  相似文献   

5.
The objectives of these experiments were 1) to describe the effect of maximum treadmill exercise on gas exchange, arterial blood gases, and arterial blood oxygenation in rats acclimated for 3 wk to simulated altitude (SA, barometric pressure 370-380 Torr) and 2) to determine the contribution of acid-base changes to the changes in arterial blood oxygenation of hypoxic exercise. Maximum O2 uptake (VO2max) was measured in four groups of rats: 1) normoxic controls run in normoxia (Nx), 2) normoxic controls run in acute hypoxia [AHx inspiratory PO2 (PIO2) approximately 70 Torr], 3) SA rats run in hypoxia (3WHx, PIO2 approximately 70 Torr), and 4) SA rats run in normoxia (ANx). VO2max (ml STPD.min-1.kg-1) was 70.8 +/- 0.9 in Nx, 46.4 +/- 1.9 in AHx, 52.6 +/- 1.1 in 3WHx, and 70.0 +/- 2.4 in ANx. Exercise resulted in acidosis, hypocapnia, and elevated blood lactate in all groups. Although blood lactate increased less in 3WHx and ANx, pH was the same or lower than in Nx and AHx, reflecting the low buffer capacity of SA. In AHx and 3WHx, arterial PO2 increased with exercise; however, O2 saturation of hemoglobin in arterial blood (SaO2) decreased. In vitro measurements of the Bohr shift suggest that SaO2 decreased as a result of a decrease in hemoglobin O2 affinity. The data indicate that several features of hypoxic exercise in this model are similar to those seen in humans, with the exception of the mechanism of decrease in SaO2, which, in humans, appears to be due to incomplete alveolar-capillary equilibration.  相似文献   

6.
Previous studies (J. Appl. Physiol. 58: 978-988 and 989-995, 1985) have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during heavy exercise at sea level and during hypobaric hypoxia in a chamber [fractional inspired O2 concentration (FIO2) = 0.21, minimum barometric pressure (PB) = 429 Torr, inspired O2 partial pressure (PIO2) = 80 Torr]. We used the multiple inert gas elimination technique to compare gas exchange during exercise under normobaric hypoxia (FIO2 = 0.11, PB = 760 Torr, PIO2 = 80 Torr) with earlier hypobaric measurements. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate (HR), minute ventilation, respiratory rate (RR), and blood temperature were recorded at rest and during steady-state exercise in 10 normal subjects in the following order: rest, air; rest, 11% O2; light exercise (75 W), 11% O2; intermediate exercise (150 W), 11% O2; heavy exercise (greater than 200 W), 11% O2; heavy exercise, 100% O2 and then air; and rest 20 minutes postexercise, air. VA/Q inequality increased significantly during hypoxic exercise [mean log standard deviation of perfusion (logSDQ) = 0.42 +/- 0.03 (rest) and 0.67 +/- 0.09 (at 2.3 l/min O2 consumption), P less than 0.01]. VA/Q inequality was improved by relief of hypoxia (logSDQ = 0.51 +/- 0.04 and 0.48 +/- 0.02 for 100% O2 and air breathing, respectively). Diffusion limitation for O2 was evident at all exercise levels while breathing 11% O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
E B Olson 《Life sciences》1987,41(2):161-167
During ventilatory acclimatization to hypoxia in rats, PaCO2 progressively falls from about 40 torr in normoxia (PIO2 approximately equal to 150 torr) to a new steady-state at about 23 torr in chronic hypoxia (24 or more hours at PIO2 approximately equal to 90 torr). In acute (20 or 60 minutes) hypoxia naloxone treatment caused a hyperventilation greater than that caused by acute hypoxia alone. Following 20 minutes hypoxia, naloxone treated rats had a PaCO2 = 28.6 +/- 0.7 torr (mean +/- 95% confidence limits) which was significantly lower (P less than .001) than the saline treated PaCO2 = 31.0 +/- 0.6 torr. In contrast, in normoxia and at 24 hour hypoxia and at 20 minute return to normoxia following 24 hours hypoxia, naloxone treatment had no effect on PaCO2. We conclude that in the rat about one third of the ventilatory acclimatization to hypoxia is due to a progressively decreasing endogenous opioid-like inhibition of ventilation.  相似文献   

8.
A decrease in maximal O2 uptake has been demonstrated with increasing altitude. However, direct measurements of individual links in the O2 transport chain at extreme altitude have not been obtained previously. In this study we examined eight healthy males, aged 21-31 yr, at rest and during steady-state exercise at sea level and the following inspired O2 pressures (PIO2): 80, 63, 49, and 43 Torr, during a 40-day simulated ascent of Mt. Everest. The subjects exercised on a cycle ergometer, and heart rate was recorded by an electrocardiograph; ventilation, O2 uptake, and CO2 output were measured by open circuit. Arterial and mixed venous blood samples were collected from indwelling radial or brachial and pulmonary arterial catheters for analysis of blood gases, O2 saturation and content, and lactate. As PIO2 decreased, maximal O2 uptake decreased from 3.98 +/- 0.20 l/min at sea level to 1.17 +/- 0.08 l/min at PIO2 43 Torr. This was associated with profound hypoxemia and hypocapnia; at 60 W of exercise at PIO2 43 Torr, arterial PO2 = 28 +/- 1 Torr and PCO2 = 11 +/- 1 Torr, with a marked reduction in mixed venous PO2 [14.8 +/- 1 (SE) Torr]. Considering the major factors responsible for transfer of O2 from the atmosphere to the tissues, the most important adaptations occurred in ventilation where a fourfold increase in alveolar ventilation was observed. Diffusion from alveolus to end-capillary blood was unchanged with altitude. The mass circulatory transport of O2 to the tissue capillaries was also unaffected by altitude except at PIO2 43 Torr where cardiac output was increased for a given O2 uptake. Diffusion from the capillary to the tissue mitochondria, reflected by mixed venous PO2, was also increased with altitude. With increasing altitude, blood lactate was progressively reduced at maximal exercise, whereas at any absolute and relative submaximal work load, blood lactate was higher. These findings suggest that although glycogenolysis may be accentuated at low work loads, it may not be maximally activated at exhaustion.  相似文献   

9.
We previously demonstrated that, in awake goats, 6 h of hypoxic carotid body perfusion during systemic normoxia produced time-dependent hyperventilation that is typical of ventilatory acclimatization to hypoxia (VAH). The hypocapnic alkalosis that occurred could have produced VAH by inducing cerebral vasoconstriction and brain lactic acidosis even though systemic arterial normoxia was maintained. In the present study we tested the hypothesis that hypocapnic alkalosis is a necessary component of VAH. Goats were prepared so that one carotid body could be perfused, from an extracorporeal circuit, with blood in which gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Using this preparation we carried out 4 h of hypoxic carotid body perfusion while maintaining systemic arterial (and brain) normoxia in awake goats. Expired minute ventilation (VE) was measured while CO2 was added to inspired air to maintain normocapnia. Carotid body PCO2 and PO2 were maintained near 40 Torr during the 4-h carotid body perfusion. Control mean VE was 8.65 +/- 0.48 l/min (mean +/- SE). With acute carotid body hypoxia (30 min) VE increased to 21.73 +/- 2.02 l/min (P less than 0.05); over the ensuing 3.5 h of carotid body hypoxia, VE progressively increased to 39.14 +/- 4.14 l/min (P less than 0.05). These data indicate that neither cerebral hypoxia nor hypocapnic alkalosis are required to produce VAH. After termination of the 4-h carotid body stimulation, hyperventilation was not maintained in these studies, i.e., there was no deacclimatization. This suggests that acclimatization and deacclimatization are produced by different mechanisms.  相似文献   

10.
Goats were prepared so that one carotid body (CB) could be perfused with blood in which the gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Since one CB is functionally adequate, the nonperfused CB was excised. To determine whether systemic arterial hypoxemia is necessary for ventilatory acclimatization to hypoxia (VAH), the CB was perfused with hypoxic normocapnic blood for 6 h [means +/- SE: partial pressure of carotid body O2 (PcbO2), 40.6 +/- 0.3 Torr; partial pressure of carotid body CO2 (PcbCO2), 38.8 +/- 0.2 Torr] while the awake goat breathed room air to maintain systemic arterial normoxia. In control periods before and after CB hypoxia the CB was perfused with hyperoxic normocapnic blood. Changes in arterial PCO2 (PaCO2) were used as an index of changes in ventilation. Acute hypoxia (0.5 h of hypoxic perfusion) resulted in hyperventilation sufficient to reduce average PaCO2 by 6.7 Torr from control (P less than 0.05). Over the subsequent 5.5 h of hypoxic perfusion, average PaCO2 decreased further, reaching 4.8 Torr below that observed acutely (P less than 0.05). Acute CB hyperoxic perfusion (20 min) following 6 h of hypoxia resulted in only partial restoration of PaCO2 toward control values; PaCO2 remained 7.9 Torr below control (P less than 0.05). The progressive hyperventilation that occurred during and after 6 h of CB hypoxia with concomitant systemic normoxia is similar to that occurring with total body hypoxia. We conclude that systemic (and probably brain) hypoxia is not a necessary requisite for VAH.  相似文献   

11.
The causes of exercise-induced hypoxemia (EIH) remain unclear. We studied the mechanisms of EIH in highly trained cyclists. Five subjects had no significant change from resting arterial PO(2) (Pa(O(2)); 92.1 +/- 2.6 Torr) during maximal exercise (C), and seven subjects (E) had a >10-Torr reduction in Pa(O(2)) (81.7 +/- 4.5 Torr). Later, they were studied at rest and during various exercise intensities by using the multiple inert gas elimination technique in normoxia and hypoxia (13.2% O(2)). During normoxia at 90% peak O(2) consumption, Pa(O(2)) was lower in E compared with C (87 +/- 4 vs. 97 +/- 6 Torr, P < 0.001) and alveolar-to-arterial O(2) tension difference (A-aDO(2)) was greater (33 +/- 4 vs. 23 +/- 1 Torr, P < 0. 001). Diffusion limitation accounted for 23 (E) and 13 Torr (C) of the A-aDO(2) (P < 0.01). There were no significant differences between groups in arterial PCO(2) (Pa(CO(2))) or ventilation-perfusion (VA/Q) inequality as measured by the log SD of the perfusion distribution (logSD(Q)). Stepwise multiple linear regression revealed that lung O(2) diffusing capacity (DL(O(2))), logSD(Q), and Pa(CO(2)) each accounted for approximately 30% of the variance in Pa(O(2)) (r = 0.95, P < 0.001). These data suggest that EIH has a multifactorial etiology related to DL(O(2)), VA/Q inequality, and ventilation.  相似文献   

12.
31P nuclear magnetic resonance spectroscopy (31P-NMRS) was performed on brain cross sections of four human subjects before and after 7 days in a hypobaric chamber at 447 Torr to test the hypothesis that brain intracellular acidosis develops during acclimatization to high altitude and accounts for the progressively increasing ventilation that develops (ventilatory acclimatization). Arterial blood gas measurements confirmed increased ventilation. At the end of 1 wk of hypobaria, brain intracellular pH was 7.023 +/- 0.046 (SD), unchanged from preexposure pH of 6.998 +/- 0.029. After return to sea level, however, it decreased to 6.918 +/- 0.032 at 15 min (P less than 0.01) and 6.920 +/- 0.046 at 12 h (P less than 0.01). The ventilatory response to hypoxia increased [from 0.35 +/- 0.11 (l/min)/(-%O2 saturation) before exposure to 0.69 +/- 0.19 after, P = 0.06]. Brain intracellular acidosis is probably not a supplemental stimulus to ventilatory acclimatization to high altitude. However, brain intracellular acidosis develops on return to normoxia from chronic hypoxia, suggesting that brain pH may follow changes in blood and cerebrospinal fluid pH as they are altered by changes in ventilation.  相似文献   

13.
Systemic O2 transport during maximal exercise at different inspired PO2 (PIO2) values was studied in sodium cyanate-treated (CY) and nontreated (NT) rats. CY rats exhibited increased O2 affinity of Hb (exercise O2 half-saturation pressure of Hb = 27.5 vs. 42.5 Torr), elevated blood Hb concentration, pulmonary hypertension, blunted hypoxic pulmonary vasoconstriction, and normal ventilatory response to exercise. Maximal rate of convective O2 transport was higher and tissue O2 extraction was lower in CY than in NT rats. The relative magnitude of these opposing changes, which determined the net effect of cyanate on maximal O2 uptake (VO2 max), varied at different PIO2: VO2 max (ml. min-1. kg-1) was lower in normoxia (72.8 +/- 1.9 vs. 81. 1 +/- 1.2), the same at 70 Torr PIO2 (55.4 +/- 1.4 vs. 54.1 +/- 1.4), and higher at 55 Torr PIO2 (48 +/- 0.7 vs. 40.4 +/- 1.9) in CY than in NT rats. The beneficial effect of cyanate on VO2 max at 55 Torr PIO2 disappeared when Hb concentration was lowered to normal. It is concluded that the effect of cyanate on VO2 max depends on the relative changes in blood O2 convection and tissue O2 extraction, which vary at different PIO2. Although uptake of O2 by the blood in the lungs is enhanced by cyanate, its release at the tissues is limited, probably because of a reduction in the capillary-to-tissue PO2 diffusion gradient secondary to the increased O2 affinity of Hb.  相似文献   

14.
We asked whether lung innervation was essential for the normal postnatal development of the lung in conditions of normoxia, hypoxia, or hyperoxia. Litters of newborn rats were assigned to a normoxic [inspired oxygen partial pressure (PIO2) = 150 Torr, eight litters], hypoxic (PIO2 = 100 Torr, nine litters), or hyperoxic (PIO2 = 360 Torr, nine litters) group. Each litter consisted of 12 pups. Two days after birth, one-third of the litter had the vagus and sympathetic trunk cut in the neck on the left side [left denervated (L)], one-third was denervated on the right side (R), and one-third was sham-operated (S). From day 3, all pups were exposed to the designed PIO2, until day 8 or days 21-22. Almost all rats, whether S, R, or L, survived in normoxia and hyperoxia, whereas in hypoxia survival at day 22 of R and L was approximately 60-65%. Body growth was the same in S, R, and L and less in hypoxia than in normoxia or hyperoxia. At days 8 and 22, hematocrit and hemoglobin concentration, heart and lung dry and wet weights, and lung DNA content did not differ among S, R, and L, whether the pups were raised in normoxia, hypoxia, or hyperoxia. At days 21-22, aerobic metabolism and breathing pattern, both measured during air breathing, as well as compliance of isolated lungs, were also similar among S, R, and L for each of the conditions in which the pups were raised.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pulmonary diffusing capacities (DL) of NO and CO were determined simultaneously from rebreathing equilibration kinetics in anesthetized paralyzed supine dogs (mean body wt 20 kg) after denitrogenation (replacement of N2 by Ar). During rebreathing the dogs were ventilated in closed circuit with a gas mixture containing 0.06% NO, 0.06% 13C18O, and 1% He in Ar for 15 s, with tidal volume of 0.5 liter and frequency of 60/min. The partial pressures of NO, 13C18O, 16O18O, N2, Ar, CO2, and He in the trachea were continuously analyzed by mass spectrometry. Measurements were performed at various O2 levels characterized by the mean end-expired PO2 during rebreathing (PE'O2). In control conditions ("normoxia," PE'O2 = 67 +/- 8 Torr) the following mean +/- SD values were obtained (in ml.min-1.Torr-1): DLNO = 52.4 +/- 11.0 and DLCO = 15.4 +/- 2.9. In hypoxia (PE'O2 = 24 +/- 7 Torr) DLNO increased by 11 +/- 8% and DLCO by 19 +/- 10%, and in hyperoxia (PE'O2 = 390 +/- 26 Torr) DLNO decreased to 87 +/- 3% and DLCO to 56 +/- 8% with respect to values in normoxia. DLNO/DLCO of 3.24 +/- 0.06 (hypoxia), 3.38 +/- 0.31 (normoxia), and 5.54 +/- 1.04 (hyperoxia) were significantly higher than the NO/CO Krogh diffusion constant ratio (1.92) predicted for simple diffusion through aqueous layers. With increasing O2 uptake elicited by 2,4-dinitrophenol, DLNO and DLCO increased and DLNO/DLCO remained close to unchanged. The results suggest that the combined effects of diffusion and chemical reaction with hemoglobin limit alveolar-capillary transport of CO. If it is assumed that reaction kinetics of NO with hemoglobin (known to be extremely fast) are not rate limiting for NO uptake, the contribution of the slow chemical reaction with hemoglobin to the total CO uptake resistance (= 1/DLCO) was estimated to be 38% in hypoxia, 41% in normoxia, and 64% in hyperoxia. The various factors expected to restrict the validity of this analysis are discussed, in particular the effects of functional inhomogeneity.  相似文献   

16.
Carotid chemoreceptor activity during acute and sustained hypoxia in goats   总被引:6,自引:0,他引:6  
The role of carotid body chemoreceptors in ventilatory acclimatization to hypoxia, i.e., the progressive, time-dependent increase in ventilation during the first several hours or days of hypoxic exposure, is not well understood. The purpose of this investigation was to characterize the effects of acute and prolonged (up to 4 h) hypoxia on carotid body chemoreceptor discharge frequency in anesthetized goats. The goat was chosen for study because of its well-documented and rapid acclimatization to hypoxia. The response of the goat carotid body to acute progressive isocapnic hypoxia was similar to other species, i.e., a hyperbolic increase in discharge as arterial PO2 (PaO2) decreased. The response of 35 single chemoreceptor fibers to an isocapnic [arterial PCO2 (PaCO2) 38-40 Torr)] decrease in PaO2 of from 100 +/- 1.7 to 40.7 +/- 0.5 (SE) Torr was an increase in mean discharge frequency from 1.7 +/- 0.2 to 5.8 +/- 0.4 impulses. During sustained isocapnic steady-state hypoxia (PaO2 39.8 +/- 0.5 Torr, PaCO2, 38.4 +/- 0.4 Torr) chemoreceptor afferent discharge frequency remained constant for the first hour of hypoxic exposure. Thereafter, single-fiber chemoreceptor afferents exhibited a progressive, time-related increase in discharge (1.3 +/- 0.2 impulses.s-1.h-1, P less than 0.01) during sustained hypoxia of up to 4-h duration. These data suggest that increased carotid chemoreceptor activity contributes to ventilatory acclimatization to hypoxia.  相似文献   

17.
Previous studies have shown that normal arterial PCO2 can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main stem bronchi, although this constant-flow ventilation (CFV) was also associated with a significant increase in ventilation-perfusion (VA/Q) inequality, compared with conventional mechanical ventilation (IPPV). Conceivably, this VA/Q inequality might result from differences in VA/Q ratios among lobes caused by nonuniform distribution of ventilation, even though individual lobes are relatively homogeneous. Alternatively, the VA/Q inequality may occur at a lobar level if those factors causing the VA/Q mismatch also existed within lobes. We compared the efficiency of gas exchange simultaneously in whole lung and left lower lobe by use of the multiple inert gas elimination technique in nine anesthetized open-chest dogs. Measurements of whole lung and left lower lobe gas exchange allowed comparison of the degree of VA/Q inequality within vs. among lobes. During IPPV with positive end-expiratory pressure, arterial PO2 and PCO2 (183 +/- 41 and 34.3 +/- 3.1 Torr, respectively) were similar to lobar venous PO2 and PCO2 (172 +/- 64 and 35.7 +/- 4.1 Torr, respectively; inspired O2 fraction = 0.44 +/- 0.02). Switching to CFV (3 l.kg-1.min-1) decreased arterial PO2 (112 +/- 26 Torr, P less than 0.001) and lobar venous PO2 (120 +/- 27 Torr, P less than 0.01) but did not change the shunt measured with inert gases (P greater than 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
E B Olson 《Life sciences》1988,42(15):1469-1476
Awake, adult male rats (some with chronically indwelling femoral artery catheters) were exposed for up to 7 days to one of three environments: a) normoxia (PIO2 = 155 Torr), b) hypoxic hypocapnia (PIO2 = 90 Torr), and c) hypoxic normocapnia (PIO2 = 73 Torr, PICO2 = 32 Torr), and arterial blood gas and acid-base status were documented. After 1 hour to 7 days, rats were sacrificed, and the time courses of the brain levels and turnovers of norepinephrine (NE), dopamine (DA) and serotonin (5-hydroxytryptamine or 5HT) were determined in each condition. The transient decrease in monoamine levels seen on exposure to acute hypoxia was absent if normocapnia was maintained; 7 days hypoxia with or without hypocapnia resulted in increased monoamine levels. Normocapnia also prevented an immediate, sustained decrease in 5HT turnover and a delayed decrease in DA turnover which were observed in hypoxic hypocapnia. A delayed increase in 5HT turnover appeared to be due to hypoxia independent of PaCO2. Therefore, the initial, transient loss of mental acuity and some ventilatory adaptations observed during prolonged hypoxia may be a result of the decrease in PaCO2 rather than the decreased oxygen concentration.  相似文献   

19.
To investigate the contribution of the peripheral chemoreceptors to the susceptibility to posthyperventilation apnea, we evaluated the time course and magnitude of hypocapnia required to produce apnea at different levels of peripheral chemoreceptor activation produced by exposure to three levels of inspired P(O2). We measured the apneic threshold and the apnea latency in nine normal sleeping subjects in response to augmented breaths during normoxia (room air), hypoxia (arterial O2 saturation = 78-80%), and hyperoxia (inspired O2 fraction = 50-52%). Pressure support mechanical ventilation in the assist mode was employed to introduce a single or multiple numbers of consecutive, sigh-like breaths to cause apnea. The apnea latency was measured from the end inspiration of the first augmented breath to the onset of apnea. It was 12.2 +/- 1.1 s during normoxia, which was similar to the lung-to-ear circulation delay of 11.7 s in these subjects. Hypoxia shortened the apnea latency (6.3 +/- 0.8 s; P < 0.05), whereas hyperoxia prolonged it (71.5 +/- 13.8 s; P < 0.01). The apneic threshold end-tidal P(CO2) (Pet(CO2)) was defined as the Pet(CO2)) at the onset of apnea. During hypoxia, the apneic threshold Pet(CO2) was higher (38.9 +/- 1.7 Torr; P < 0.01) compared with normoxia (35.8 +/- 1.1; Torr); during hyperoxia, it was lower (33.0 +/- 0.8 Torr; P < 0.05). Furthermore, the difference between the eupneic Pet(CO2) and apneic threshold Pet(CO2) was smaller during hypoxia (3.0 +/- 1.0 Torr P < 001) and greater during hyperoxia (10.6 +/- 0.8 Torr; P < 0.05) compared with normoxia (8.0 +/- 0.6 Torr). Correspondingly, the hypocapnic ventilatory response to CO2 below the eupneic Pet(CO2) was increased by hypoxia (3.44 +/- 0.63 l.min(-1).Torr(-1); P < 0.05) and decreased by hyperoxia (0.63 +/- 0.04 l.min(-1).Torr(-1); P < 0.05) compared with normoxia (0.79 +/- 0.05 l.min(-1).Torr(-1)). These findings indicate that posthyperventilation apnea is initiated by the peripheral chemoreceptors and that the varying susceptibility to apnea during hypoxia vs. hyperoxia is influenced by the relative activity of these receptors.  相似文献   

20.
Our aim was to isolate the independent effects of 1) inspiratory muscle work (W(b)) and 2) arterial hypoxemia during heavy-intensity exercise in acute hypoxia on locomotor muscle fatigue. Eight cyclists exercised to exhaustion in hypoxia [inspired O(2) fraction (Fi(O(2))) = 0.15, arterial hemoglobin saturation (Sa(O(2))) = 81 +/- 1%; 8.6 +/- 0.5 min, 273 +/- 6 W; Hypoxia-control (Ctrl)] and at the same work rate and duration in normoxia (Sa(O(2)) = 95 +/- 1%; Normoxia-Ctrl). These trials were repeated, but with a 35-80% reduction in W(b) achieved via proportional assist ventilation (PAV). Quadriceps twitch force was assessed via magnetic femoral nerve stimulation before and 2 min after exercise. The isolated effects of W(b) in hypoxia on quadriceps fatigue, independent of reductions in Sa(O(2)), were revealed by comparing Hypoxia-Ctrl and Hypoxia-PAV at equal levels of Sa(O(2)) (P = 0.10). Immediately after hypoxic exercise potentiated twitch force of the quadriceps (Q(tw,pot)) decreased by 30 +/- 3% below preexercise baseline, and this reduction was attenuated by about one-third after PAV exercise (21 +/- 4%; P = 0.0007). This effect of W(b) on quadriceps fatigue occurred at exercise work rates during which, in normoxia, reducing W(b) had no significant effect on fatigue. The isolated effects of reduced Sa(O(2)) on quadriceps fatigue, independent of changes in W(b), were revealed by comparing Hypoxia-PAV and Normoxia-PAV at equal levels of W(b). Q(tw,pot) decreased by 15 +/- 2% below preexercise baseline after Normoxia-PAV, and this reduction was exacerbated by about one-third after Hypoxia-PAV (-22 +/- 3%; P = 0.034). We conclude that both arterial hypoxemia and W(b) contribute significantly to the rate of development of locomotor muscle fatigue during exercise in acute hypoxia; this occurs at work rates during which, in normoxia, W(b) has no effect on peripheral fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号