首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物结皮有可能通过物理、水文、养分循环影响与之相邻的维管植物,但二者相互关系尚存在着争议。本文以新疆古尔班通古特沙漠广泛分布的地衣结皮为研究对象,分析了生物结皮对3种荒漠草本植物:尖喙牻牛儿苗(Erodium oxyrrhynchum)、条叶庭芥(Alyssum linifolium)和琉苞菊(Hyalea pulchella)的生长及其对元素吸收的影响。研究结果表明:(1)生物结皮对3种荒漠草本植物生长的影响在生长期不同阶段存在差异。在前期,生物结皮的存在促进了植物生物量的累积;而后期,生物结皮却抑制了植物生长。生物结皮的存在显著影响了荒漠草本植物生物量的累积和冠根比。(2)生物结皮的存在显著增加了3种荒漠草本植物对N和K的吸收,而对P的吸收没有显著影响。生物结皮对3种植物Cu、Ca、Mg、Na、Cl的吸收存在种间差异。本研究结果将为该荒漠生态系统潜在的植被演替方向提供重要的科学根据。  相似文献   

2.
Slow rates of cactus growth in the Sonoran Desert and high productivityof some Cactaceae under cultivation suggest that relativelylow growth rates are not the consequence of a long cell divisioncycle but of short optimal periods for growth and adverse environmentalfactors. To verify this hypothesis, the duration of the celldivision cycle (T)in the root apical meristem of seedlings ofthree sympatric species from the Sonoran Desert [Ferocactuspeninsulae(F. A. C. Weber) Britton & Rose ‘Townsendianus’(Britton & Rose) N. P. Taylor, stat. nov.,Stenocereus gummosus(Engelm.)Gibson & Horak andPachycereus pringlei(S. Watson) Britton& Rose] was estimated with the rate-of-cell-production (RCP)and the cell-flow (colchicine) methods. Both methods were appliedduring the steady-state growth phase, which was relatively shortin the first two species because of the determinate patternof root growth. The RCP method permitted estimation ofTin eachroot individually. Durations of the cell division cycle wereinversely proportional to the rate of root growth (r2rangedfrom 0.42 to 0.88,P<0.05).T,determined by the cell-flow method,ranged from 14.4 to 19.3 h in these species and was within thesame range asTdetermined by the RCP method. The averageTdeterminedby the RCP method was 67 to 75% of that determined by the cell-flowmethod. Results obtained with both methods are compared andanalysed. The proposed hypothesis appears to be correct, indicatingthat these species can be more productive under cultivationthan in the wild due to the relatively short duration of thecell division cycle. Adaptive features of these findings arealso considered.Copyright 1998 Annals of Botany Company Cactaceae, cell division cycle, root growth, root meristem, Sonoran Desert  相似文献   

3.
Abstract: Effective conservation requires strategies to monitor populations efficiently, which can be especially difficult for rare or elusive species where field surveys require high effort and considerable cost. Populations of many reptiles, including Sonoran desert tortoises (Gopherus agassizii), are challenging to monitor effectively because they are cryptic, they occur at low densities, and their activity is limited both seasonally and daily. We compared efficiency and statistical power of 2 survey methods appropriate for tortoises and other rare vertebrates, line-transect distance sampling and site occupancy. In 2005 and 2006 combined, we surveyed 120 1-km transects to estimate density and 40 3-ha plots 5 times each to estimate occupancy of Sonoran desert tortoises in 2 mountain ranges in southern Arizona, USA. For both mountain ranges combined, we estimated density to be 0.30 adult tortoises/ha (95% CI = 0.17–0.43) and occupancy to be 0.72 (95% CI = 0.56–0.89). For the sampling designs we evaluated, monitoring efforts based on occupancy were 8–36% more efficient than those based on density, when contrasting only survey effort, and 17–30% more efficient when contrasting total effort (surveying, hiking to and from survey locations, and radiotracking). Occupancy had greater statistical power to detect annual declines in the proportion of area occupied than did distance sampling to detect annual declines in density. For example, we estimated that power to detect a 5% annual decline with 10 years of annual sampling was 0.92 (95% CI = 0.75–0.98) for occupancy and 0.43 (95% CI = 0.35–0.52) for distance sampling. Although all sampling methods have limitations, occupancy estimation offers a promising alternative for monitoring populations of rare vertebrates, including tortoises in the Sonoran Desert.  相似文献   

4.
To investigate root distribution with depth, which can affect competition for water, surface areas of young and old roots were determined in 4-cm-thick soil layers for the C3 subshrub Encelia farinosa Torrey and A. Gray, the C4 bunchgrass Pleuraphis rigida Thurber, and the CAM (crassulacean acid metabolism) leaf succulent Agave deserti Engelm. At a site in the northwestern Sonoran Desert these codominant perennials had mean rooting depths of only 9-10 cm for isolated plants. Young roots had mean depths of 5-6 cm after a winter wet period, but 11-13 cm after a summer wet period. Young roots were most profuse in the winter for E. farinosa, which has the lowest optimum temperature for root growth, and in the summer for P. rigida, which has the highest optimum temperature. Roots for interspecific pairs in close proximity averaged 2-3 cm shallower for A. deserti and a similar distance deeper for the other two species compared with isolated plants, suggesting partial spatial separation of their root niches when the plants are in a competitive situation. For plants with a similar root surface area, the twofold greater leaf area and twofold higher maximal transpiration rate of E. farinosa were consistent with its higher root hydraulic conductivity, leading to a fourfold higher estimated maximal water uptake rate than for P. rigida. Continuous water uptake accounted for the shoot water loss by A. deserti, which has a high shoot water-storage capacity. A lower minimum leaf water potential for P. rigida than for A. deserti indicates greater ability to extract water from a drying soil, suggesting that temporal niche separation for water uptake also occurs.  相似文献   

5.
Increases in the incidence and severity of drought threaten the viability of rare plants in arid regions. The endangered Nichol's Turk's head cactus (Echinocactus horizonthalonius Lemaire var. nicholii L. Benson) occurs only in four small, isolated populations in the Sonoran Desert of North America. Since 1995 we have monitored a population in southeastern Arizona (USA). Here we report 23 years of observations on abundance, growth, mortality, flowering and recruitment. Abundance of plants decreased from 132 in 1996 to 40 in 2017, with 100 individuals recruited and 203 dying during the study. Individual plants grew slowly, increasing annually by an average of 0.22 cm (95% confidence interval, 0.18–0.26 cm) in diameter and 0.27 cm (0.20–0.33 cm) in height. Growth was slowest when drought was most severe and slowed as plants reached maximum size. Annual mortality increased markedly across the study period and did not vary with plant size. Annual probability of flowering increased as plants increased in diameter but not in height, and varied with precipitation and drought but not with mean annual temperature. Recruitment was higher when average temperature was higher and the number of recruits per capita increased across the study period. The annual rate of change in abundance averaged −6%, but shifted markedly from −1% during 1995–2008 to −11% during 2008–2017. Our results indicate that the population's decline was not a consequence of failed recruitment but of increased mortality, which we discuss in the context of climate and herbivory.  相似文献   

6.
Summary A two-yar survey of winter-germinating annual plants in southern Arizona indicates that species diversity declines consistently as a function of increasingly recent grazing by cattle. This finding conflicts with reports that predators enhance prey species diversity in some marine and terrestrial systems. Consideration of equilibrium and nonequilibrium models suggests, however, that enhanced diversity should occur only for open, multi-celled prey populations experiencing intermittant predation. These general conditions appear not to hold for the cattle-annual plant system.  相似文献   

7.
Understanding the interactions between terrestrial and aquatic ecosystems remains an important research focus in ecology. In arid landscapes, catchments are drained by a channel continuum that represents a potentially important driver of ecological pattern and process in the surrounding terrestrial environment. To better understand the role of drainage networks in arid landscapes, we determined how stream size influences the structure and productivity of riparian vegetation, and the accumulation of organic matter (OM) in soils beneath plants in an upper Sonoran Desert basin. Canopy volume of velvet mesquite (Prosopis velutina), as well as overall plant cover, increased along lateral upland–riparian gradients, and among riparian zones adjacent to increasingly larger streams. Foliar δ13C signatures for P. velutina suggested that landscape patterns in vegetation structure reflect increases in water availability along this arid stream continuum. Leaf litter and annual grass biomass production both increased with canopy volume, and total aboveground litter production ranged from 137 g m−2 y−1 in upland habitat to 446 g m−2 y−1 in the riparian zone of the perennial stream. OM accumulation in soils beneath P. velutina increased with canopy volume across a broad range of drainage sizes; however, in the riparian zone of larger streams, flooding further modified patterns of OM storage. Drainage networks represent important determinants of vegetation structure and function in upper Sonoran Desert basins, and the extent to which streams act as sources of plant-available water and/or agents of fluvial disturbance has implications for material storage in arid soils.  相似文献   

8.
Spatial and temporal variation in islands of fertility in the Sonoran Desert   总被引:10,自引:2,他引:8  
In many arid and semi-arid ecosystems, canopy trees and shrubs have a strong positive influence on soil moisture and nutrient availability, creating islands of fertility where organic matter and nutrients are high relative to areas outside the canopy. Previous studies of canopy effects on soil processes have rarely considered how landscape context may modulate these effects. We measured the effects of velvet mesquite trees (Prosopis velutina) on soil moisture and the biogeochemistry of nitrogen at different positions along a topographic gradient from upland desert to riparian zone in the Sonoran Desert of central Arizona. We also examined how landscape position and patterns of precipitation interact to determine the influence of P. velutina on soil moisture, N availability assessed using ion exchange resins, net N mineralization and net nitrification, and microbial biomass C and N. P. velutina clearly created islands of fertility with higher soil organic matter, net N mineralization and net nitrification rates, and microbial biomass under mesquite canopies. These effects were consistent across the landscape and showed little temporal variability. Magnitude and direction of effect of mesquite on soil moisture changed with landscape position, from positive in the upland to negative in the terrace, but only when soil moisture was >4%. Resin N showed responses to mesquite that depended on precipitation and topographic position, with highest values during wet seasons and under mesquite on terraces. We suggest changes in proximity of P. velutina to groundwater lead to shifts in biogeochemical processes and species interactions with change in landscape position along a topographic gradient.  相似文献   

9.
Genetic variation at six microsatellite DNA loci and a segment of the mitochondrial cytochrome oxidase subunit I (COI) locus was used to estimate gene flow, population structure, and demographic history in the cactophilic Drosophila pachea from the Sonoran Desert of North America, a species that shows a strict association with its senita host cactus (genus Lophocereus). For microsatellite analyses, thirteen populations of D. pachea were sampled, five in mainland Mexico and the southwestern USA, and eight on the Baja California (Baja) peninsula, covering essentially the entire range of the species. Analysis of molecular variance (AMOVA) of microsatellite data revealed that populations from both the mainland and the Baja peninsula generally showed little structure, although there were a few exceptions, suggesting some local differentiation and restriction of gene flow within both regions. Pairwise comparisons of F(ST) among each of the mainland and Baja populations showed evidence of both panmixia and population subdivision. AMOVA performed on grouped populations from both the mainland and Baja, however, revealed significant partitioning of genetic variation among the two regions, but no partitioning among localities within each region. Bayesian skyline analyses of the COI data set, consisting of four mainland and seven peninsular populations, revealed population expansions dating to the Pleistocene or late Pliocene in D. pachea from both regions, although regional differences were seen in the estimated timing of the expansions and in changes in effective population size over time.  相似文献   

10.
Arbuscular-mycorrhizal (AM) fungi stabilize the soil and enhance plant growth by alleviating nutrient and drought stress. Their contributions to agriculture are well known, but their role in desert ecosystems has received less attention. The AM status of perennial plants in disturbed and undisturbed plots were investigated in the Sonoran Desert near La Paz, Baja California Sur, Mexico to determine if AM fungi contribute to resource-island stability and plant establishment. All perennial plants (46 species) in the study plots were AM, but root colonization varied widely (<10 to> 70%). Roots of plants that established in greatest numbers in plant-free zones (colonizers) of disturbed areas were highly AM. Plants with trace (<10%) root colonization (cacti of the tribe Pachycereae: Pachycereus pringlei, Machaerocereus gummosus, and Lemaireocereus thurberi; and Agave datilyo) established preferentially in association with nurse trees. The pachycereid cacti grew under Prosopis articulata and A. datilyo under Olneya tesota canopies. Of the nine species of trees and arborescent shrubs in the area, the mature (>20 yr) nurse-legumes P. articulata and O. tesota supported the largest number of under-story plants. Younger plants had only occasional associates. AM propagule densities in plant-free areas were lower than under plant canopies (40 vs. 280 propagules/kg soil). Occurrence of soil mounds (islands) under plants owing to soil deposition was related to the nature of the canopies and to the AM status of the roots. Island soils were enmeshed with AM-fungal hyphae, especially in the upper layer (approximately 10 cm). Seedlings of P. pringlei, growing in a screenhouse for six months in soil collected under P. articulata, had a biomass ten times greater than plants growing in bare-area soil. The results are consistent with the proposition that AM fungi contributed to the plant-soil system of our study area by: (1) helping to stabilize windborne soil that settles under dense plant canopies; (2) enhancing the establishment of colonizer plants in bare soils of disturbed areas; and (3) influencing plant associations through differences in the mycotrophic status of the associates.  相似文献   

11.
Ecological processes are centered to water availability in drylands; however, less known nutrient stoichiometry can help explain much of their structure and ecological interactions. Here we look to the foliar stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) of 38 dominant plant species from the Sonoran Desert, grouped in four different functional types to describe ecological characteristics and processes. We found that foliar N, C:N, C:P, and N:P stoichiometric ratios, but not P, were higher than those known to most other ecosystems and indicate P but not N limitations in leaves. Biological N fixers (BNF) had even higher leaf N concentrations, but bio-elemental concentrations and stoichiometry ratios were not different to other non-N-fixing legume species which underscores the need to understand the physiological mechanisms for high N, and to how costly BNF can succeed in P-limiting drylands environments. Stoichiometry ratios, and to lesser extent elemental concentrations, were able to characterize BNF and colonizing strategies in the Sonoran Desert, as well as explain leaf attribute differences, ecological processes, and biogeochemical niches in this dryland ecosystem, even when no direct reference is made to other water-limitation strategies.  相似文献   

12.
All pith samples from 68 dead saguaro cacti in 3 plots and 11 isolated dead plants in Saguaro National Monument, Arizona, produced at least one species of myxomycete upon incubation at 20 or 30°C. Three species,Badhamia gracilis (Macbr.) Macbr.,Physarum straminipes Lister, andDidymium eremophilum M. Blackwell et Gilbertson, developed at high frequencies on the substrates in moist chamber culture.Perichaena corticalis (Batsch) Rost, andProtophysarum phloiogenum M. Blackwell et Alexopoulos were also present. Although previous literature reports [9] indicated that Myxomycetes grow best at low pH, these species all tolerated substrates of pH 8.7–10.4.Didymium eremophilum andP. phloiogenum had peaks in sporulation within 6 days; other species were slower. There was no difference in time of sporulation ofB. gracilis orD. eremophilum at 20 and 30°C; however, sporulation ofP. straminipes was significantly later at 30°C. Reduced spore germination and slower buildup of critically sized amoebal populations ofP. straminipes at 30°C may be a factor.  相似文献   

13.
Many avian species of the North American Sonoran desert, e.g., the black-throated sparrow, Amphispiza bilineata, cactus wren, Campylorhynchus brunneicapillus, and curve-billed thrasher, Toxostoma curvirostre, can potentially breed from March/April to August. It is possible that, at least in summer, intense heat and aridity may have inhibitory effects on breeding by precipitating a stress response. Stress typically results in a rise in secretion of adrenocorticosteroid hormones that then inhibit reproduction by suppressing release of gonadal hormones. However, we found that plasma levels of corticosterone were not higher during summer, compared with winter, even in 1989 when summer temperatures were higher than normal. In June 1990, temperatures were also above normal and soared to the highest level recorded in Arizona (50 degrees C). Plasma levels of corticosterone during June were high in black-throated sparrows, but less so in two other species (Abert's towhee, Pipilo aberti, and Inca dove, Scardafella inca) found in more shady riparian and suburban habitat with constant access to water. The adrenocortical response to stress (as measured by the rate of corticosterone increase following capture) was reduced in the hottest summer months in black-throated sparrows, cactus wrens, and curve-billed thrashers, but less so in Abert's towhee an Inca dove. These data suggest that at least some birds breeding in the open desert with restricted access to water are able to suppress the classical adrenocortical response to stress. The response is then reactivated in winter after breeding has ceased. It is possible that this stress modulation may allow breeding to continue despite severe heat. Analysis of plasma from these species indicated that the apparent modulation of the adrenocortical response to stress was not an artifact of reduced affinity or capacity of corticosterone binding proteins.  相似文献   

14.
ABSTRACT Long-term monitoring programs must use informative yet cost-effective methods. Occupancy estimates that incorporate detection probabilities are used with increasing frequency to describe species status and make management recommendations. Estimating changes in the occupancy of points over time in response to management actions or environmental changes may be especially useful for management of the Palm Springs round-tailed ground squirrel (Spermophilus tereticaudus chlorus), a subspecies covered under the Coachella Valley Multiple Species Habitat Conservation Plan and Natural Community Conservation Plan. In 2002 and 2003, we estimated occupancy and detection probability of ground squirrels across lands modeled as ground squirrel habitat by the Scientific Advisory Committee for the Habitat Conservation Plan and tested a priori hypotheses about how occupancy varied among vegetation and substrate types. In the 2003 study, we asked whether these associations were affected by winter rains after the 2002 drought year. Occupancy in 2003 was estimated at 0.99 (SE = 0.01) in Western honey mesquite (Prosopis glandulosa) on dunes and hummocks, and occupancy of the remaining modeled habitat was best described by distance to mesquite, with the occupancy probability decreasing with increasing distance from mesquite on dunes or hummocks. The best-supported model in 2002 described the distribution of ground squirrels as a function of only vegetation and substrate type. However, the best-supported models in 2003 suggested that distance to mesquite was a component of the occupancy of non-mesquite vegetation. Mesquite seems to provide high-quality habitat that can support ground squirrels at high occupancy probabilities that may breed successfully every year. In contrast, other vegetation types provide low-quality habitat that can only support ground squirrels at low occupancy probabilities that may only breed occasionally. Mesquite could be an essential refugium during drought years, and the 4 best-supported models in 2003 suggest that restoration of mesquite beginning near currently occupied mesquite patches could be critical for maintaining ground squirrel populations on the preserves.  相似文献   

15.
The environmental distribution, habitat segregation, and vegetation associates of the columnar cacti Carnegiea gigantea, Stenocereus thurberi, and Lophocereus schottii were examined in Organ Pipe Cactus National Monument, Arizona. Three primary environmental gradients were identified with principal components analysis of environmental data: soil texture, elevation/nutrients, and xericness (based on slope aspect and angle). Environmental influents of spatial variation in density were modeled with ordinary least squares regression analysis, and common associates were identified with two-way indicator species analysis for each cactus. Of the three cacti, Carnegiea gigantea occurred over the broadest ecological range of habitats, but was densest on coarse, granitically derived alluvial soils of flat upper bajadas and basin floors, where it was associated with Larrea tridentata, Ambrosia deltoidea, and Opuntia fulgida. Stenocereus thurberi reached its maximum densities on coarse sandy soils of steep, south-facing granitic slopes, with Encelia farinosa, Jatropha cuneata, and Opuntia bigelovii as associates. Lophocereus schottii was restricted to very coarse, granitically derived alluvial soils in the southern part of the monument, where it occurred along wash banks with Beloperone californica, Hymenoclea salsola, Acacia greggii, and Opuntia arbuscula.Abbreviations DCA Detrended correspondence analysis - OPCNM Organ Pipe Cactus National Monument - OLS Ordinary least squares - PCA Principal components analysis - RA Reciprocal averaging - TWINSPAN Two-way indicator species analysis  相似文献   

16.
A comprehensive investigation of the Pacific cicada killer, Sphecius convallis Patton, was undertaken to examine the behavioral and physiological mechanisms by which they are able to complete their life cycle in the thermal extremes of the Upper Sonoran Desert. S. convallis were endothermic, exhibiting elevated and relatively constant thorax temperatures during many activities. Males basked in trees at dawn to warm up, then used a variety of behaviors and perching strategies to maintain thorax temperature during territorial behavior. The thorax temperature of females was highest during provisioning and orientation flights, somewhat lower while investigating burrows, and lowest while digging burrows. The optimal thorax temperature for flight was about 40 °C, which was approximated most closely by males resting in the shade during the afternoon. In mating clusters, the mated male was the hottest, the female was coolest and the other males were intermediate. Wasps lost about 5% of body mass during heating treatments, and may use evaporative water loss for cooling. Pacific cicada killers use a complex suite of behavioral and physiological adaptations to regulate body temperature during their nesting season.  相似文献   

17.
对从银杏叶片中分离的1株具有高抗氧化活性的内生真菌SG0016,并对SG0016菌株进行形态学和分子生物学鉴定,以发酵液DPPH自由基清除率为指标,采用单因素和正交试验对SG0016菌株的接种量、培养温度、装液量、培养时间和碳源、氮源等培养条件进行优化,以提高其发酵液抗氧化活性。结果显示,SG0016菌为球毛壳菌(Chaetomium globosum);其发酵液抗氧化活性最佳培养条件为:接种量10%、培养温度23℃、装液量100 mL(250mL的三角瓶)、培养时间7d,葡萄糖为碳源,酵母膏为氮源。在此条件下,发酵液的DPPH自由基清除率最高,为96.17%,比优化前提高了23.6%。银杏内生真菌球毛壳菌SG0016代谢产物具有较好的抗氧化活性,为天然抗氧化剂的开发提供了新的来源。  相似文献   

18.
19.
Profiles of shortwave radiation, net radiation and temperaturewere measured in swards of three grasses of contrasting structureLolium perenne cv. S24, L. perenne cv. Reveille and Festucaarundinacea cv. S170. Measurements were also made of the reflectionof shortwave radiation, leaf water potential and stomatal resistance.Differences in canopy structure influenced the absorption andreflection of radiation by the varieties. The absorption ofnet radiation and its influence on air temperature inside thecanopy was shown to vary with canopy structure. Calculationsshowed that diurnal changes in the reflection and transmissionof light (400–700 nm) would have little effect on canopyphotosynthesis. No clear relationship between leaf extensionrate, temperature and leaf water potential could be established,although decreases in water potential did appear to reduce thepotential response of leaf extension rate to temperature.  相似文献   

20.
Abstract. A comparative study of two chromosomal races of the winter-active ephemeral Machaeranthera gracilis showed that the seasonal magnitudes of photosynthesis were only slightly greater for a progeny desert race than for an ancestral foothills race. Maximum observed photosynthetic capacity and the seasonal reduction in foliar photosynthesis occurred earlier in the year for the desert race. The relative growth rate was higher in this race up until the time of its peak seasonal biomass. A ratio of harvested net production to estimated gross primary production decreased until anthesis. Photosynthesis contributing to net growth continued into periods with moderate environmental stress. The continuation of growth by the desert race was enhanced by maintenance of a higher root-shoot ratio, as well as greater relative stem growth. During reproduction, foliar CO2 assimilation could not solely provide the measured dry matter accumulation, suggesting the importance of assimilate contribution by photosynthetic stems. Seasonal increases in the enthalpy content of whole plants and plant organs occurred for both races, indicating the absence of significant translocation during reproduction and the potential for stem photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号