首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paraoxonase 1 (PON1) is a high-density lipoprotein-associated enzyme that is believed to be involved in the protection against oxidative stress. There is evidence that paraoxonase activity is reduced in patients with diabetes and cataract. In the current study, we analyzed mRNA expression of PON1 as well as other members of the paraoxonase family, PON2 and PON3, in human cataractous lens samples. Our results indicate that only PON1 is expressed at the gene and protein levels in human lens tissues. We quantified MDA levels and measured PON1 (paraoxonase/arylesterase) enzymatic activities in subjects suffering from cataract due to aging and diabetes. Decreased PON1 activity was more pronounced in diabetic patients (p  <  0.001) compared to senile subjects, which may be due to glycation and increased oxidative insult. To examine the structural alterations that occur in response to glycation, we constructed a three-dimensional model of PON1 and its glycated variant. Glycation at Lys70 and Lys75 is predicted to cause hindrance in binding of substrate to the active site of the enzyme.  相似文献   

2.
An enzymatically active human cytochrome P450 (P450) 1A2:rat NADPH-P450 reductase fusion protein was purified and partially characterized following heterologous expression inEscherichia coli. A cDNA was engineered to include the coding sequence for human P450 1A2 at its 5′ end (up to but not including the stop codon) fused in-frame to the coding sequence for a truncated (soluble) rat NADPH-P450 reductase at its 3′ end via an oligonucleotide sequence encoding the hydrophilic dipeptide Ser–Thr. This fusion plasmid was expressed inE. coliand the recombinant protein was purified from the detergent-solubilized membrane fraction via sequential DEAE, ADP–agarose, and hydroxylapatite chromatographies. The purified protein has the spectral characteristics of human P450 1A2 and cytochromecreduction activity comparable to rabbit NADPH-P450 reductase. The fusion protein catalyzed 7-ethoxyresorufinO-deethylation and phenacetinO-deethylation to appreciable levels in the presence of NADPH and phospholipid. While these activities were comparable to those of other such P450:NADPH-P450 reductase fusion proteins, they were lower than those of the system reconstituted from its individual hemoprotein and flavoprotein components. Nevertheless, the production of a functional, catalytically self-sufficient monooxygenase inE. colienhances the prospect of using bacterial systems for production and characterization of human P450 drug metabolites as well as for biodegradation of chemicals in the environment.  相似文献   

3.
Autism spectrum disorders (ASD) comprise a complex and heterogeneous group of conditions of unknown aetiology, characterized by significant disturbances in social, communicative and behavioural functioning. Recent studies suggested a possible implication of the high-density lipoprotein associated esterase/lactonase paraoxonase 1 (PON1) in ASD. In the present study, we aimed at investigating the PON1 status in a group of 50 children with ASD as compared to healthy age and sex matched control participants. We evaluated PON1 bioavailability (i.e. arylesterase activity) and catalytic activity (i.e. paraoxonase activity) in plasma using spectrophotometric methods and the two common polymorphisms in the PON1 coding region (Q192R, L55M) by employing Light Cycler real-time PCR. We found that both PON1 arylesterase and PON1 paraoxonase activities were decreased in autistic patients (respectively, P < 0.001, P < 0.05), but no association with less active variants of the PON1 gene was found. The PON1 phenotype, inferred from the two-dimensional enzyme analysis, had a similar distribution in the ASD group and the control group. In conclusion, both the bioavailability and the catalytic activity of PON1 are impaired in ASD, despite no association with the Q192R and L55M polymorphisms in the PON1 gene and a normal distribution of the PON1 phenotype.  相似文献   

4.
5.
6.
7.
Protein 4.1 is a globular 80-kDa component of the erythrocyte membrane skeleton that enhances spectrin–actin interaction via its internal 10-kDa domain. Previous studies have shown that protein 4.1 mRNA is expressed as multiple alternatively spliced isoforms, resulting from the inclusion or exclusion of small cassette sequences called motifs. By tissue screening for protein 4.1 isoforms, we have observed new features of an already complex pattern of alternative splicing within the spectrin/actin binding domain. In particular, we found a new 51-nt exon that is present almost exclusively in muscle tissue. In addition, we have isolated multiple genomic clones spanning over 200 kb, containing the entire erythroid and nonerythroid coding sequence of the human locus. The exon/intron structure has now been characterized; with the exception of a 17-nt motif, all of the alternatively spliced motifs correspond to individual exons. The 3′-untranslated region (UTR) has also been completely sequenced using various PCR and genomic-sequencing methods. The 3′ UTR, over 3 kb, accounts for one-half of the mature mRNA.  相似文献   

8.
mRNA and genomic DNA were isolated from adult Cylicocyclus nassatus, and the mRNA was reverse transcribed. The cDNA was PCR amplified using degenerate primers designed according to the alignment of the β-tubulin amino acid sequences of other species. To complete the coding sequence, the 3′ end was amplified with the 3′-RACE, and for amplification of the 5′ end the SL1-primer was used. The cDNA of the β-tubulin gene of C. nassatus spans 1429 bp and encodes a protein of 448 amino acids. Specific primers were developed from the cDNA sequence to amplify the genomic DNA sequence and to analyse the genomic organisation of the β-tubulin gene. The complete sequence of the genomic DNA of the β-tubulin gene of C. nassatus has a size of 2652 bp and is organised into nine exons and eight introns. The identities with the exons of the gru-1 β-tubulin gene of Haemonchus contortus range between 79% and 97%.  相似文献   

9.
Pseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (Δψmito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); and caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, quantitative PCR, and Western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), whereas DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: Δψmito depolarized, Cacyto increased, and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control Δψmito, Ca2+ release from the ER, and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin and staurosporine, but activates Bax- and Bak-independent apoptosis in response to C12.  相似文献   

10.
11.
12.
The paraoxonase (PON1) gene polymorphisms are known to affect the PON1 activity and coronary artery disease (CAD) risk. Studies done so far have given conflicting results. In the present study, we determined the role of PON1 genetic variants and PON1 activity in the development of CAD in North–West Indian Punjabis, a distinct ethnic group, having high incidence of both CAD and type 2 diabetes. 300 angiographically proven CAD with type 2 diabetics and 250 type 2 diabetics with no clinically evident CAD were enrolled. Serum PON1 activity and genotyping of coding (Q192R, L55M) and promoter (− 909G/C, − 162A/G, − 108C/T) region polymorphisms were carried out and haplotypes were determined using PHASE software.  相似文献   

13.
Human 293 cells were stably transfected with a plasmid introducing a receptor for the ecdysone analog muristerone. The cells were further stably transfected with muristerone-inducible expression vectors carrying either the cDNA for the human high KM 5′-nucleotidase or the coding sequence of the nucleotidase linked to the 5′-end of the sequence for the green fluorescent protein. Upon induction, both types of transfectants overproduced nucleotidase activity in a time- and dose-dependent manner. Western blots gave values close to the expected subunit molecular masses of 65 and 92 kDa, respectively, excluding processing of the induced proteins. Cells induced to overexpress the nucleotidase showed a decreased growth rate and contained smaller pools of each of the four common ribonucleoside triphosphates. They showed no increased resistance to the toxicity of 2-chlorodeoxyadenosine.  相似文献   

14.
15.
16.
In a construct containing a GUS reporter gene driven by the 5′ regulatory elements from rubi3, expression was enhanced 4-fold when a 20-nucleotide (nt) GUS 5′ untranslated sequence was replaced with 9 nt sequences derived from rubi3′s second exon. The roles of the sequences immediately upstream from the GUS translation initiation codon, and their significance in gene expression, were investigated. Sequence analysis suggests that complementarity between sequences immediately 5′ of a translation initiation codon and the rice 17S rRNA may be responsible for the reduction in protein levels from constructs containing the GUS leader sequence. The results demonstrate an affect sequences immediately upstream from transgenic coding sequences have on expression, and when using the rubi3 5′ regulatory sequence in particular.  相似文献   

17.
HDL-associated paraoxonase type 1 (PON1) can protect LDL and HDL against oxidative modification in vitro and therefore may protect against cardiovascular disease. We investigated the effects of PON1 levels, activity, and genetic variation on high density lipoprotein-cholesterol (HDL-C) levels, circulating oxidized LDL (OxLDL), subclinical inflammation [high-sensitive C-reactive protein (Hs-CRP)], and carotid atherosclerosis. PON1 genotypes (L55M, Q192R, -107C/T, -162A/G, -824G/A, and -907G/C) were determined in 302 patients with familial hypercholesterolemia. PON1 activity was monitored by the hydrolysis rate of paraoxon, diazoxon, and phenyl acetate. PON1 levels, OxLDL, and Hs-CRP were determined using an immunoassay. The genetic variants of PON1 that were associated with high levels and activity of the enzyme were associated with higher HDL-C levels (P values for trend: 0.008, 0.020, 0.042, and 0.037 for L55M, Q192R, -107C/T, and -907G/C, respectively). In addition to the PON1 genotype, there was also a positive correlation between PON1 levels and activity and HDL-C (PON1 levels: r = 0.37, P < 0.001; paraoxonase activity: r = 0.23, P = 0.01; diazoxonase activity: r = 0.29, P < 0.001; arylesterase activity: r = 0.19, P = 0.03). Our observations support the hypothesis that both PON1 levels and activity preserve HDL-C in plasma.  相似文献   

18.
HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10−3). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10−3). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10−3; AA P = 6.52 × 10−4), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted.  相似文献   

19.
Alleles and genotypes of polymorphic markers of paraoxonase 1 and paraoxonase 2 genes (PON1 and PON2) encoding enzymes of the organism antioxidant defense were compared in type 1 diabetes mellitus patients with or without diabetic nephropathy. The patients with nonoverlapping (“polar”) phenotypes constituted different groups. The first group contained patients with diabetic nephropathy (DN+, n = 62), clinical proteinuria (albuminuria above 300 mg per day), and at least 15-year disease duration. In control group, the patients had no diabetic nephropathy (DN−, n = 68), their albuminuria was below 200 mg per day, and disease duration was at least 20 years. Comparative analysis with exact Fisher’s test revealed no significant differences in frequencies of alleles and genotypes of the PON1 gene polymorphic marker Gln192Arg and of PON2 gene polymorphic markers Ala148Gly and Cys311Ser. Our results suggest that the polymorphic markers studied are not associated with diabetic nephropathy among Russian patients in Moscow.__________Translated from Genetika, Vol. 41, No. 6, 2005, pp. 844–849.Original Russian Text Copyright © 2005 by Voron’ko, Yakunina, Shestakova, Zotova, Chugunova, Shamkhalova, Vikulova, Debabov, Dedov, Nosikov.  相似文献   

20.
The fragile histidine triad (Fhit) protein is a homodimeric protein with diadenosine 5′,5-P1,P3-triphosphate (Ap3A) asymmetrical hydrolase activity. We have cloned the human cDNA Fhit in the pPROEX-1 vector and expressed with high yield in Escherichia coli with the sequence Met-Gly-His6-Asp-Tyr-Asp-Ile-Pro-Thr-Thr followed by a rTEV protease cleavage site, denoted as “H6TV,” fused to the N-terminus of Fhit. Expression of H6TV–Fhit in BL21(DE3) cells for 3 h at 37°C produced 30 mg of H6TV–Fhit from 1 L of cell culture (4 g of cells). The H6TV–Fhit protein was purified to homogeneity in a single step, with a yield of 80%, using nickel-nitrilotriacetate resin and imidazole buffer as eluting agent. Incubation of H6TV–Fhit with rTEV protease at 4°C for 24 h resulted in complete cleavage of the H6TV peptide. There were no unspecific cleavage products. The purified Fhit protein could be stored for 3 weeks at 4°C without loss of activity. The pure protein was stable at −20°C for at least 18 months when stored in buffer containing 25% glycerol. Purified Fhit was highly active, with a Km value for Ap3A of 0.9 μM and a kcat(monomer) value of 7.2 ± 1.6 s−1 (n = 5). The catalytic properties of unconjugated Fhit protein and the H6TV–Fhit fusion protein were essentially identical. This indicates that the 24-amino-acid peptide containing the six histidines fused to the N-terminus of Fhit does not interfere in forming the active homodimers or in the binding of Ap3A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号