首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
During the early postimplantation period, rodent embryos survive in a relatively anaerobic environment in utero and are vulnerable to a high oxygen pressure. They become resistant to oxygen stress when they are exposed to a higher oxygen pressure after the uteroplacental circulation is established. However, it is unknown how embryos acquire such resistance against oxidative stress. This study was undertaken to examine whether an antioxidant protein thioredoxin (TRX) plays a significant role in the embryonic acquisition of the tolerance to oxidative stress. E7.5 embryos of C57BL/6 wild-type (WT) and human TRX (hTRX) inserted-transgenic (Tg) embryos were cultured under 10 or 25% O 2 and their growth and morphological differentiation were evaluated. The TRX expression and the products of oxidative stress (8-hydroxy-2'-deoxy-guanosine and carbonylated proteins) in their tissues were also examined. When WT embryos were cultivated in vitro under 25% O 2, their growth was significantly disturbed and various developmental abnormalities were induced, which did not occur in embryos grown under 10% O 2 . However, such embryotoxic effects of oxygen were significantly attenuated in the hTRX Tg embryos that continuously express hTRX. Accumulation of the products of oxidative stress was significantly reduced in hTRX Tg embryos as compared with that in WT embryos. The TRX transgene appears to provide the embryo with the resistance against oxidative stress and may play a crucial role in the redox regulation in embryos.  相似文献   

2.
3.
Bacillus anthracis is the causative agent of anthrax, which is associated with a high mortality rate. Like several medically important bacteria, B. anthracis lacks glutathione but encodes many genes annotated as thioredoxins, thioredoxin reductases, and glutaredoxin-like proteins. We have cloned, expressed, and characterized three potential thioredoxins, two potential thioredoxin reductases, and three glutaredoxin-like proteins. Of these, thioredoxin 1 (Trx1) and NrdH reduced insulin, 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), and the manganese-containing type Ib ribonucleotide reductase (RNR) from B. anthracis in the presence of NADPH and thioredoxin reductase 1 (TR1), whereas thioredoxin 2 (Trx2) could only reduce DTNB. Potential TR2 was verified as an FAD-containing protein reducible by dithiothreitol but not by NAD(P)H. The recently discovered monothiol bacillithiol did not work as a reductant for RNR, either directly or via any of the redoxins. The catalytic efficiency of Trx1 was 3 and 20 times higher than that of Trx2 and NrdH, respectively, as substrates for TR1. Additionally, the catalytic efficiency of Trx1 as an electron donor for RNR was 7-fold higher than that of NrdH. In extracts of B. anthracis, Trx1 was responsible for almost all of the disulfide reductase activity, whereas Western blots showed that the level of Trx1 was 15 and 60 times higher than that of Trx2 and NrdH, respectively. Our findings demonstrate that the most important general disulfide reductase system in B. anthracis is TR1/Trx1 and that Trx1 is the physiologically relevant electron donor for RNR. This information may provide a basis for the development of novel antimicrobial therapies targeting this severe pathogen.  相似文献   

4.
This study aimed to investigate the effect of madecassoside against oxidative stress‐induced injury of endothelial cells. Hydrogen peroxide (H2O2, 500 µmol/L) was employed as an inducer of oxidative stress in human umbilical vein endothelial cells (HUVECs). Cell apoptosis was detected by Hoechst 33258 staining and flow cytometry. Caspase‐3 activity and mitochondria membrane potential were further examined. As a result, madecassoside (10, 30, 100 µmol/L) could reverse morphological changes, elevate cell viability, increase glutathione levels, and decrease lactate dehydrogenase and malondialdehyde levels caused by H2O2 in a concentration‐dependent manner. It attenuated apoptosis, preventing the activation of caspase‐3 and the loss of mitochondria membrane potential, as well as the phosphorylation of p38 mitogen‐activated protein kinase (MAPK) in HUVECs. These data suggested that madecassoside could protect HUVECs from oxidative injury, which was probably achieved by inhibiting cell apoptosis via protection of mitochondria membranes and downregulation of the activation of caspase‐3 and p38 MAPK. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:399–406, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21434  相似文献   

5.
Oxidized protein hydrolase (OPH) preferentially degrades oxidatively damaged proteins in vitro and is widely distributed in various cells and tissues. The role of OPH in intact cells exposed to oxidative stress was examined. For this purpose, using COS-7, a cell line derived from African green monkey kidney, COS-7-OPH cells that stably overexpressed OPH were established. When COS-7-OPH cells were exposed to oxidative stress induced by H(2)O(2) and paraquat, accumulation of protein carbonyls in the cells was apparently lower than that of parental COS-7 cells, and COS-7-OPH cells were significantly resistant to the oxidative stress compared with parental COS-7 cells. The majority of overexpressed OPH in the cells was found to be located uniformly in cytosol, and its location was not altered by H(2)O(2)-induced oxidative stress. Above results indicate that OPH in intact cells plays a preventive role against oxidative stress and suggest that OPH relieves cells from accumulation of oxidatively damaged proteins.  相似文献   

6.
Somatic cell nuclear transfer has successfully been used to clone several mammalian species including the mouse, albeit with extremely low efficiency. This study investigated gene expression in cloned mouse embryos derived from cumulus cell donor nuclei, in comparison with in vivo fertilized mouse embryos, at progressive developmental stages. Enucleation was carried out by the conventional puncture method rather than by the piezo-actuated technique, whereas nuclear transfer was achieved by direct cumulus nuclear injection. Embryonic development was monitored from chemically induced activation on day 0 until the blastocyst stage on day 4. Poor developmental competence of cloned embryos was observed, which was confirmed by lower cell counts in cloned blastocysts, compared with the in vivo fertilized controls. Subsequently, real-time polymerase chain reaction was used to analyze and compare embryonic gene expression at the 2-cell, 4-cell, and blastocyst stages, between the experimental and control groups. The results showed reduced expression of the candidate genes in cloned 2-cell stage embryos, as manifested by poor developmental competence, compared with expression in the in vivo fertilized controls. Cloned 4-cell embryos and blastocysts, which had overcome the developmental block at the 2-cell stage, also showed up-regulated and down-regulated expression of several genes, strongly suggesting incomplete nuclear reprogramming. We have therefore demonstrated that aberrant embryonic gene expression is associated with low developmental competence of cloned mouse embryos. To improve the efficiency of somatic cell nuclear transfer, strategies to rectify aberrant gene expression in cloned embryos should be investigated.This project was funded mainly by the National University of Singapore (grant number: R-174-000-065-112/303).  相似文献   

7.
A. Dhali 《Theriogenology》2009,71(9):1408-1416
The effect of modified droplet vitrification was assessed on cellular actin filament organization, apoptosis related gene expression and development competence in mouse embryos cultured in vitro. Mouse zygotes, 2-cell embryos and morulae were vitrified in ethylene glycol (VS-1) and ethylene glycol plus DMSO (VS-2) and thawed by directly placing the vitrified drop into 0.3 M sucrose solution at 37 °C. High recovery (93-99%) of morphologically normal embryos was evident following vitrification and thawing. No detectable actin filament disruption was observed in the embryos at any development stage following vitrification and thawing and/or in vitro culture. The expression pattern of Bax, Bcl2 and p53 genes was altered (P < 0.05) in vitrified zygotes and 2-cell embryos, but not in morulae. Although a large proportion of the vitrified zygotes (59.5 ± 4.4% in VS-1 and 57.9 ± 4.5% in VS-2; mean ± S.E.M.) and 2-cell embryos (63.1 ± 4.4% in VS-1 and 59.2 ± 4.3% in VS-2) developed into blastocysts, development of control embryos (70.2 ± 5.0% of zygotes and 75.5 ± 4.4% of 2-cell embryos) into blastocysts was higher (P < 0.05). In contrast, development of the control and vitrified morulae into blastocysts (more than 85%) was similar. We concluded that the modified droplet vitrification procedure supported better survival of morula stage compared to zygotes and 2-cell mouse embryos.  相似文献   

8.
9.
An oxidative stress-sensitive protein was found in the microaerophile Campylobacter jejuni. A novel 27-kDa protein was found to decrease concomitantly with a decrease in viability from either exogenous H(2)O(2) stress or endogenous oxidative stresses in aerobic conditions. Sequence analyses revealed that the 27-kDa protein was identical to Cj0012c in C. jejuni NCTC11168 and its deduced 215 amino acid sequence has similarity to two non-heme iron proteins found in other bacteria, rubredoxin oxidoreductase (Rbo) and rubrerythrin (Rbr). Thus, we designated the protein as Rrc (Rbo/Rbr-like protein of C. jejuni). In H(2)O(2)-treated cells, Western blot analysis showed some bands smaller than Rrc, and RT-PCR showed similar expression of Rrc mRNA to the control without treatment, suggesting that the sensitive response of Rrc to oxidative stress is due to degradation of the protein.  相似文献   

10.
Oxidative stress is implicated in the pathogenesis of diabetic complications. The experiments were performed on normal and experimental male Wistar rats treated with Scoparia dulcis plant extract (SPEt). The effect of SPEt was tested on streptozotocin (STZ) treated Rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. Administration of an aqueous extract of Scoparia dulcis by intragastric intubation (po) at a dose of 200 mg/kg body weight significantly decreased the blood glucose and lipid peroxidative marker thiobarbituric acid reactive substances (TBARS) with significant increase in the activities of plasma insulin, pancreatic superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in streptozotocin diabetic rats at the end of 15 days treatment. Streptozotocin at a dose of 10 mug/mL evoked 6-fold stimulation of insulin secretion from isolated islets indicating its insulin secretagogue activity. The extract markedly reduced the STZ-induced lipidperoxidation in RINm5F cells. Further, SPEt protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. Treatment of RINm5F cells with 5 mM STZ and 10 mug of SPEt completely abrogated apoptosis induced by STZ, suggesting the involvement of oxidative stress. Flow cytometric assessment on the level of intracellular peroxides using fluorescent probe 2'7'-dichlorofluorescein diacetate (DCF-DA) confirmed that STZ (46%) induced an intracellular oxidative stress in RINm5F cells, which was suppressed by SPEt (21%). In addition, SPEt also reduced (33%) the STZ-induced apoptosis (72%) in RINm5F cells indicating the mode of protection of SPEt on RIN m5Fcells, islets, and pancreatic beta-cell mass (histopathological observations). Present study thus confirms antihyperglycemic effect of SPEt and also demonstrated the consistently strong antioxidant properties of Scoparia dulcis used in the traditional medicine.  相似文献   

11.
Acute inhalation of combustion smoke causes neurological deficits in survivors. Inhaled smoke includes carbon monoxide, noxious gases, and a hypoxic environment, which disrupt oxygenation and generate free radicals. To replicate a smoke-inhalation scenario, we developed an experimental model of acute exposure to smoke for the awake mouse/rat and detected induction of biomarkers of oxidative stress. These include inhibition of mitochondrial respiratory complexes and formation of oxidative DNA damage in the brain. DNA damage is likely to contribute to neuronal dysfunction and progression of brain injury. In the search for strategies to attenuate the smoke-initiated brain injury, we produced a transgenic mouse overexpressing the neuronal globin protein neuroglobin. Neuroglobin was neuroprotective in diverse models of ischemic/hypoxic/toxic brain injuries. Here, we report lesser inhibition of respiratory complex I and reduced formation of smoke-induced DNA damage in neuroglobin transgenic compared to wild-type mouse brain. DNA damage was assessed using the standard comet assay, as well as a modified comet assay done in conjunction with an enzyme that excises oxidized guanines that form readily under conditions of oxidative stress. Both comet assays revealed that overexpressed neuroglobin attenuates the formation of oxidative DNA damage, in vivo, in the brain. These findings suggest that elevated neuroglobin exerts neuroprotection, in part, by decreasing the impact of acute smoke inhalation on the integrity of neuronal DNA.  相似文献   

12.
13.
14.
15.
The structure of wild-type mouse prion protein mPrP(23-231) consists of two distinctive segments with approximately equal size, a disordered and flexible N-terminal domain encompassing residues 23-124 and a largely structured C-terminal domain containing about 40% of helical structure and stabilized by one disulfide bond (Cys(178)-Cys(213)). We have expressed a mPrP mutant with 4 Ala/Ser-->Cys replacements, two each at the N-(Cys(36), Cys(112)) and C-(Cys(134), Cys(169)) domains. Our specific aims are to study the interaction between N- and C-domains of mPrP during the oxidative folding and to produce stabilized isomers of mPrP for further analysis. Oxidative folding of fully reduced mutant, mPrP(6C), generates one predominant 3-disulfide isomer, designated as N-mPrP(3SS), which comprises the native disulfide (Cys(178)-Cys(213)) and two non-native disulfide bonds (Cys(36)-Cys(134) and Cys(112)-Cys(169)) that covalently connect the N- and C-domains. In comparison to wild-type mPrP(23-231), N-mPrP(3SS) exhibits an indistinguishable CD spectra, a similar conformational stability in the absence of thiol and a reduced ability to aggregate. In the presence of thiol catalyst and denaturant, N-mPrP(3SS) unfolds and generates diverse isomers that are amenable to further isolation, structural and functional analysis.  相似文献   

16.
MitoNEET (mNT) is the founding member of the recently discovered CDGSH family of [2Fe-2S] proteins capable of [2Fe-2S] cluster transfer to apo-acceptor proteins. It is a target of the thiazolidinedione (TZD) class of anti-diabetes drugs whose binding modulate both electron transfer and cluster transfer properties. The [2Fe-2S] cluster in mNT is destabilized upon binding of NADPH, which leads to loss of the [2Fe-2S] cluster to the solution environment. Because mNT is capable of transferring [2Fe-2S] clusters to apo-acceptor proteins, we sought to determine whether NADPH binding also affects cluster transfer. We show that NADPH inhibits transfer of the [2Fe-2S] cluster to an apo-acceptor protein with an inhibition constant (K(i)) of 200 μm, which reflects that of NADPH concentrations expected under physiological conditions. In addition, we determined that the strictly conserved cluster interacting residue Asp-84 in the CDGSH domain is necessary for the NADPH-dependent inhibition of [2Fe-2S] cluster transfer. The most critical cellular function of NADPH is in the maintenance of a pool of reducing equivalents, which is essential to counteract oxidative damage. Taken together, our findings suggest that NADPH can regulate both mNT [2Fe-2S] cluster levels in the cell as well as the ability of the protein to transfer [2Fe-2S] clusters to cytosolic or mitochondrial acceptors.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号