首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woo HJ 《Biophysical chemistry》2007,125(1):127-137
Muscle contractions are driven by cyclic conformational changes of myosin, whose molecular mechanisms of operation are being elucidated by recent advances in crystallographic studies and single molecule experiments. To complement such structural studies and consider the energetics of the conformational changes of myosin head, umbrella sampling molecular dynamics (MD) simulations were performed with the all-atom model of the scallop myosin sub-fragment 1 (S1) with a bound ATP in solution in explicit water using the crystallographic near-rigor and transition state conformations as two references. The constraints on RMSD reaction coordinates used for the umbrella sampling were found to steer the conformational changes efficiently, and relatively close correlations have been observed between the set of characteristic structural changes including the lever arm rotation and the closing of the nucleotide binding pocket. The lever arm angle and key residue interaction distances in the nucleotide binding pocket and the relay helix show gradual changes along the recovery stroke reaction coordinate, consistent with previous crystallographic and computational minimum energy studies. Thermal fluctuations, however, appear to make the switch-2 coordination of ATP more flexible than suggested by crystal structures. The local solvation environment of the fluorescence probe, Trp 507 (scallop numbering), also appears highly mobile in the presence of thermal fluctuations.  相似文献   

2.
Flowers S  Biswas EE  Biswas SB 《Biochemistry》2003,42(7):1910-1921
DnaB helicase of E. coli unwinds duplex DNA in the replication fork using the energy of ATP hydrolysis. We have analyzed structural and conformational changes in the DnaB protein in various nucleotides and DNA bound intermediate states by fluorescence quenching analysis of intrinsic fluorescence of native tryptophan (Trp) residues in DnaB. Fluorescence quenching analysis indicated that Trp48 in domain alpha is in a hydrophobic environment and resistant to fluorescence quenchers such as potassium iodide (KI). In domain beta, Trp294 was found to be in a partially hydrophobic environment, whereas Trp456 in domain gamma appeared to be in the least hydrophobic environment. Binding of oligonucleotides to DnaB helicase resulted in a significant attenuation of the fluorescence quenching profile, indicating a change in conformation. ATPgammaS or ATP binding appeared to lead to a conformation in which Trp residues had a higher degree of solvent exposure and fluorescence quenching. However, the most dramatic increase of Trp fluorescence quenching was observed with ADP binding with a possible conformational relaxation. Site-specific Trp --> Cys mutants of DnaB helicase demonstrated that conformational change upon ADP binding could be attributed exclusively to a conformational transition in the alpha domain leading to an increase in the solvent exposure of Trp48. However, formation of DnaB.ATPgammaS.DNA ternary complex led to a conformation with a fluorescence quenching profile similar to that observed with DnaB alone. The DnaB.ADP.DNA ternary complex produced a quenching curve similar to that of DnaB.ADP complex pointing to a change in conformation due to ATP hydrolysis. There are at least four identifiable structural/conformational states of DnaB helicase that are likely important in the helicase activity. The noncatalytic alpha domain in the N-terminus appeared to undergo the most significant conformational changes during nucleotide binding and hydrolysis. This is the first reported elucidation of the putative role of domain alpha, which is essential for DNA helicase action. We have correlated these results with partial structural models of alpha, beta, and gamma domains  相似文献   

3.
Although essentially conserved, the N-terminal nucleotide-binding domain (NBD) of Cdr1p and other fungal transporters has some unique substitutions of amino acids which appear to have functional significance for the drug transporters. We have previously shown that the typical Cys193 in Walker A as well as Trp326 and Asp327 in the Walker B of N-terminal NBD (NBD-512) of Cdr1p has acquired unique roles in ATP binding and hydrolysis. In the present study, we show that due to spatial proximity, fluorescence resonance energy transfer (FRET) takes place between Trp326 of Walker B and MIANS [2-(4-maleimidoanilino) naphthalene-6-sulfonic acid] on Cys193 of Walker A motif. By exploiting FRET, we demonstrate how these critical amino acids are positioned within the nucleotide-binding pocket of NBD-512 to bind and hydrolyze ATP. Our results show that both Mg2+ coordination and nucleotide binding contribute to the formation of the active site. The entry of Mg2+ into the active site causes the first large conformational change that brings Trp326 and Cys193 in close proximity to each other. We also show that besides Trp326, typical Glu238 in the Q-loop also participates in coordination of Mg2+ by NBD-512. A second conformational change is induced when ATP, but not ADP, docks into the pocket. Asn328 does sensing of the γ-phosphate of the substrate in the extended Walker B motif, which is essential for the second conformational change that must necessarily precede ATP hydrolysis. Taken together our results imply that the uniquely placed residues in NBD-512 have acquired critical roles in ATP catalysis, which drives drug extrusion.  相似文献   

4.
Dictyostelium myosin II motor domain constructs containing a single tryptophan residue near the active sites were prepared in order to characterize the process of nucleotide binding. Tryptophan was introduced at positions 113 and 131, which correspond to those naturally present in vertebrate skeletal muscle myosin, as well as position 129 that is also close to the adenine binding site. Nucleotide (ATP and ADP) binding was accompanied by a large quench in protein fluorescence in the case of the tryptophans at 129 and 131 but a small enhancement for that at 113. None of these residues was sensitive to the subsequent open-closed transition that is coupled to hydrolysis (i.e. ADP and ATP induced similar fluorescence changes). The kinetics of the fluorescence change with the F129W mutant revealed at least a three-step nucleotide binding mechanism, together with formation of a weakly competitive off-line intermediate that may represent a nonproductive mode of nucleotide binding. Overall, we conclude that the local and global conformational changes in myosin IIs induced by nucleotide binding are similar in myosins from different species, but the sign and magnitude of the tryptophan fluorescence changes reflect nonconserved residues in the immediate vicinity of each tryptophan. The nucleotide binding process is at least three-step, involving conformational changes that are quite distinct from the open-closed transition sensed by the tryptophan Trp(501) in the relay loop.  相似文献   

5.
Although essentially conserved, the N-terminal nucleotide-binding domain (NBD) of Cdr1p and other fungal transporters has some unique substitutions of amino acids which appear to have functional significance for the drug transporters. We have previously shown that the typical Cys193 in Walker A as well as Trp326 and Asp327 in the Walker B of N-terminal NBD (NBD-512) of Cdr1p has acquired unique roles in ATP binding and hydrolysis. In the present study, we show that due to spatial proximity, fluorescence resonance energy transfer (FRET) takes place between Trp326 of Walker B and MIANS [2-(4-maleimidoanilino) naphthalene-6-sulfonic acid] on Cys193 of Walker A motif. By exploiting FRET, we demonstrate how these critical amino acids are positioned within the nucleotide-binding pocket of NBD-512 to bind and hydrolyze ATP. Our results show that both Mg2+ coordination and nucleotide binding contribute to the formation of the active site. The entry of Mg2+ into the active site causes the first large conformational change that brings Trp326 and Cys193 in close proximity to each other. We also show that besides Trp326, typical Glu238 in the Q-loop also participates in coordination of Mg2+ by NBD-512. A second conformational change is induced when ATP, but not ADP, docks into the pocket. Asn328 does sensing of the gamma-phosphate of the substrate in the extended Walker B motif, which is essential for the second conformational change that must necessarily precede ATP hydrolysis. Taken together our results imply that the uniquely placed residues in NBD-512 have acquired critical roles in ATP catalysis, which drives drug extrusion.  相似文献   

6.
We have used electron paramagnetic probes attached to the ribose of ATP (SL-ATP) to monitor conformational changes in the nucleotide pocket of myosin. Spectra for analogs bound to myosin in the absence of actin showed a high degree of immobilization, indicating a closed nucleotide pocket. In the Actin.Myosin.SL-AMPPNP, Actin.Myosin.SL-ADP.BeF(3), and Actin.Myosin.SL-ADP.AlF(4) complexes, which mimic weakly binding states near the beginning of the power stroke, the nucleotide pocket remained closed. The spectra of the strongly bound Actin.Myosin.SL-ADP complex consisted of two components, one similar to the closed pocket and one with increased probe mobility, indicating a more open pocket, The temperature dependence of the spectra showed that the two conformations of the nucleotide pocket were in equilibrium, with the open conformation more favorable at higher temperatures. These results, which show that opening of the pocket occurs only in the strongly bound states, appear reasonable, as this would tend to keep ADP bound until the end of the power stroke. This conclusion also suggests that force is initially generated by a myosin with a closed nucleotide pocket.  相似文献   

7.
The motor protein myosin uses energy derived from ATP hydrolysis to produce force and motion. Important conserved components (P-loop, switch I, and switch II) help propagate small conformational changes at the active site into large scale conformational changes in distal regions of the protein. Structural and biochemical studies have indicated that switch I may be directly responsible for the reciprocal opening and closing of the actin and nucleotide-binding pockets during the ATPase cycle, thereby aiding in the coordination of these important substrate-binding sites. Smooth muscle myosin has displayed the ability to simultaneously bind tightly to both actin and ADP, although it is unclear how both substrate-binding clefts could be closed if they are rigidly coupled to switch I. Here we use single tryptophan mutants of smooth muscle myosin to determine how conformational changes in switch I are correlated with structural changes in the nucleotide and actin-binding clefts in the presence of actin and ADP. Our results suggest that a closed switch I conformation in the strongly bound actomyosin-ADP complex is responsible for maintaining tight nucleotide binding despite an open nucleotide-binding pocket. This unique state is likely to be crucial for prolonged tension maintenance in smooth muscle.  相似文献   

8.
Shen N  Zhou M  Yang B  Yu Y  Dong X  Ding J 《Nucleic acids research》2008,36(4):1288-1299
Human tryptophanyl-tRNA synthetase (hTrpRS) differs from its bacterial counterpart at several key positions of the catalytic active site and has an extra N-terminal domain, implying possibly a different catalytic mechanism. We report here the crystal structures of hTrpRS in complexes with Trp, tryptophanamide and ATP and tryptophanyl-AMP, respectively, which represent three different enzymatic states of the Trp activation reaction. Analyses of these structures reveal the molecular basis of the mechanisms of the substrate recognition and the activation reaction. The dimeric hTrpRS is structurally and functionally asymmetric with half-of-the-sites reactivity. Recognition of Trp is by an induced-fit mechanism involving conformational change of the AIDQ motif that creates a perfect pocket for the binding and activation of Trp and causes coupled movements of the N-terminal and C-terminal domains. The KMSAS loop appears to have an inherent flexibility and the binding of ATP stabilizes it in a closed conformation that secures the position of ATP for catalysis. Our structural data indicate that the catalytic mechanism of the Trp activation reaction by hTrpRS involves more moderate conformational changes of the structural elements at the active site to recognize and bind the substrates, which is more complex and fine-tuned than that of bacterial TrpRS.  相似文献   

9.
Structural rearrangements of the myosin upper-50 kD subdomain are thought to play a key role in coordinating actin binding with nucleotide hydrolysis during the myosin ATPase cycle. Such rearrangements could open and close the active site in opposition to the actin-binding cleft, helping explain the opposing affinities of myosin for actin and nucleotide. To directly examine conformational changes across the active site during the ATPase cycle we have genetically engineered a mutant of chicken smooth-muscle myosin, F344W motor domain essential light chain, which contains a single tryptophan (344W) located on a short loop between two alpha helixes that traverse the upper-50 kD subdomain in front of the active site. Fluorescence resonance energy transfer was examined between the 344W donor probe and 2'(3')-O-(N-methylanthraniloyl) (mant)-nucleotide acceptor probes in the active site of this construct. The observed fluorescence resonance energy transfer efficiencies were 6.4% in the presence of mant ADP and 23.8% in the presence of mant ATP, corresponding to distances of 33.4 A and 24.9 A, respectively. Our results are consistent with structural rearrangements in which there is an 8.5-A closure between the 344W residue and the mant moiety during the transition from the strongly (ADP) to weakly (ATP) actin-bound states of the myosin ATPase cycle.  相似文献   

10.
We used spin-labeled nucleotide analogs and fluorescence spectroscopy to monitor conformational changes at the nucleotide-binding site of wild-type Dictyostelium discoideum (WT) myosin and a construct containing a single tryptophan at position F239 near the switch 1 loop. Electron paramagnetic resonance (EPR) spectroscopy and tryptophan fluorescence have been used previously to investigate changes at the myosin nucleotide site. A limitation of fluorescence spectroscopy is that it must be done on mutated myosins containing only a single tryptophan. A limitation of EPR spectroscopy is that one infers protein conformational changes from alterations in the mobility of an attached probe. These limitations have led to controversies regarding conclusions reached by the two approaches. For the first time, the data presented here allow direct correlations to be made between the results from the two spectroscopic approaches on the same proteins and extend our previous EPR studies to a nonmuscle myosin. EPR probe mobility indicates that the conformation of the nucleotide pocket of the WT⋅SLADP (spin-labeled ADP) complex is similar to that of skeletal myosin. The pocket is closed in the absence of actin for both diphosphate and triphosphate nucleotide states. In the actin⋅myosin⋅diphosphate state, the pocket is in equilibrium between closed and open conformations, with the open conformation slightly more favorable than that seen for fast skeletal actomyosin. The EPR spectra for the mutant show similar conformations to skeletal myosin, with one exception: in the absence of actin, the nucleotide pocket of the mutant displays an open component that was approximately 4-5 kJ/mol more favorable than in skeletal or WT myosin. These observations resolve the controversies between the two techniques. The data from both techniques confirm that binding of myosin to actin alters the conformation of the myosin nucleotide pocket with similar but not identical energetics in both muscle and nonmuscle myosins.  相似文献   

11.
A major question about the mechanism of the myosin ATPase is how much of the fluorescence change which accompanies the binding of ATP to myosin is due to the conformational change induced by ATP and how much is due to the subsequent hydrolysis of ATP in the initial Pi burst. Several laboratories have suggested that the maximal rate of the fluorescence change represents the rate of the irreversible conformational change induced by ATP. In the present study, the rate of irreversible ATP binding, the rate of the initial Pi burst, and the rate of the fluorescence enhancement were compared under varied conditions. The results show that: 1) the fluorescence enhancement is mainly due to the hydrolysis of ATP in the initial Pi burst rather than to the conformational change induced by the binding of ATP; 2) the rate of the initial Pi burst is considerably slower than the rate of irreversible ATP binding at high ATP concentration; 3) the rate of the initial Pi burst is almost the same as the rate of the fluorescence enhancement. Therefore, the maximum rate of the fluorescence enhancement represents the rate of the initial Pi burst rather than the rate of the conformational change induced by ATP binding.  相似文献   

12.
The Escherichia coli L-leucine receptor is an aqueous protein and the first component in the distinct transport pathway for hydrophobic amino acids. L-leucine binding induces a conformational change, which enables the receptor to dock to the membrane components. To investigate the ligand-induced conformational change and binding properties of this protein, we used (19)F NMR to probe the four tryptophan residues located in the two lobes of the protein. The four tryptophan residues were labeled with 5-fluorotryptophan and assigned by site-directed mutagenesis. The (19)F NMR spectra of the partially ligand free proteins show broadened peaks which sharpen when L-leucine is bound, showing that the labeled wild-type protein and mutants are functional. The titration of L-phenylalanine into the 5-fluorotryptophan labeled wild-type protein shows the presence of closed and open conformers. Urea-induced denaturation studies support the NMR results that the wild-type protein binds L-phenylalanine in a different manner to L-leucine. Our studies showed that the tryptophan to phenylalanine mutations on structural units linked to the binding pocket produce subtle changes in the environment of Trp18 located directly in the binding cleft.  相似文献   

13.
ATP binding to myosin subfragment 1 (S1) induces an increase in tryptophan fluorescence. Chymotryptic rabbit skeletal S1 has 5 tryptophan residues (Trp113, 131, 440, 510 and 595), and therefore the identification of tryptophan residues perturbed by ATP is quite complex. To solve this problem we resolved the complex fluorescence spectra into log-normal and decay-associated components, and carried out the structural analysis of the microenvironment of each tryptophan in S1. The decomposition of fluorescence spectra of S1 and S1-ATP complex revealed 3 components with maxima at ca. 318, 331 and 339-342 nm. The comparison of structural parameters of microenvironment of 5 tryptophan residues with the same parameters of single-tryptophan-containing proteins with well identified fluorescence properties applying statistical method of cluster analysis, enabled us to assign Trp595 to 318 nm, Trp440 to 331 nm, and Trp 13, 131 and 510 to 342 nm spectral components. ATP induced an almost equal increase in the intensities of the intermediate (331 nm) and long-wavelength (342 nm) components, and a small decrease in the short component (318 nm). The increase in the intermediate component fluorescence most likely results from an immobilization of some quenching groups (Met437, Met441 and/or Arg444) in the environment of Trp440. The increase in the intensity and a blue shift of the long component might be associated with conformational changes in the vicinity of Trp510. However, these conclusions can not be extended directly to the other types of myosins due to the diversity in the tryptophan content and their microenvironments.  相似文献   

14.
Atomic models of the myosin motor domain with different bound nucleotides have revealed the open and closed conformations of the switch 2 element [Geeves, M.A. & Holmes, K.C. (1999) Annu. Rev. Biochem.68, 687-728]. The two conformations are in dynamic equilibrium, which is controlled by the bound nucleotide. In the present work we attempted to characterize the flexibility of the motor domain in the open and closed conformations in rabbit skeletal myosin subfragment 1. Three residues (Ser181, Lys553 and Cys707) were labelled with fluorophores and the probes identified three fluorescence resonance energy transfer pairs. The effect of ADP, ADP.BeFx, ADP.AlF4- and ADP.Vi on the conformation of the motor domain was shown by applying temperature-dependent fluorescence resonance energy transfer methods. The 50 kDa lower domain was found to maintain substantial rigidity in both the open and closed conformations to provide the structural basis of the interaction of myosin with actin. The flexibility of the 50 kDa upper domain was high in the open conformation and further increased in the closed conformation. The converter region of subfragment 1 became more rigid during the open-to-closed transition, the conformational change of which can provide the mechanical basis of the energy transduction from the nucleotide-binding pocket to the light-chain-binding domain.  相似文献   

15.
Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates approximately 65 degrees . Simultaneous with this "recovery stroke," myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 A-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transition at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.  相似文献   

16.
Fetler L  Tauc P  Hervé G  Cunin R  Brochon JC 《Biochemistry》2001,40(30):8773-8782
The homotropic and heterotropic interactions in Escherichia coli aspartate transcarbamylase (EC 2.1.3.2) are accompanied by various structure modifications. The large quaternary structure change associated with the T to R transition, promoted by substrate binding, is accompanied by different local conformational changes. These tertiary structure modifications can be monitored by fluorescence spectroscopy, after introduction of a tryptophan fluorescence probe at the site of investigation. To relate unambiguously the fluorescence signals to structure changes in a particular region, both naturally occurring Trp residues in positions 209c and 284c of the catalytic chains were previously substituted with Phe residues. The regions of interest were the so-called 240's loop at position Tyr240c, which undergoes a large conformational change upon substrate binding, and the interface between the catalytic and regulatory chains in positions Asn153r and Phe145r supposed to play a role in the different regulatory processes. Each of these tryptophan residues presents a complex fluorescence decay with three to four independent lifetimes, suggesting that the holoenzyme exists in slightly different conformational states. The bisubstrate analogue N-phosphonacetyl-L-aspartate affects mostly the environment of tryptophans at position 240c and 145r, and the fluorescence signals were related to ligand binding and the quaternary structure transition, respectively. The binding of the nucleotide activator ATP slightly affects the distribution of the conformational substates as probed by tryptophan residues at position 240c and 145r, whereas the inhibitor CTP modifies the position of the C-terminal residues as reflected by the fluorescence properties of Trp153r. These results are discussed in correlation with earlier mutagenesis studies and mechanisms of the enzyme allosteric regulation.  相似文献   

17.
The nucleotide binding subunit of the phosphate-specific transporter (PstB) from Mycobacterium tuberculosis is a member of the ABC family of permeases, which provides energy for transport through ATP hydrolysis. We utilized the intrinsic fluorescence of the single tryptophan containing protein to study the structural and conformational changes that occur upon nucleotide binding. ATP binding appeared to lead to a conformation in which the tryptophan residue had a higher degree of solvent exposure and fluorescence quenching. Substantial alteration in the proteolysis profile of PstB owing to nucleotide binding was used to decipher conformational change in the protein. In limited proteolysis experiments, we found that ATP or its nonhydrolyzable analog provided significant protection of the native protein, indicating that the effect of nucleotide on PstB conformation is directly associated with nucleotide binding. Taken together, these results indicate that nucleotide binding to PstB is accompanied by a global conformational change of the protein, which involves the helical domain from Arg137 to Trp150. Results reported here provide evidence that the putative movement of the alpha-helical sub-domain relative to the core sub-domain, until now only inferred from X-ray structures and modeling, is indeed a physiological phenomenon and is nucleotide dependent.  相似文献   

18.
Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP), the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide hydrolysis and/or binding).  相似文献   

19.
Park S  Burghardt TP 《Biochemistry》2000,39(38):11732-11741
The fluorescence intensity difference between rabbit skeletal myosin subfragment 1 (S1) and nucleotide-bound or trapped S1 isolates ATP-sensitive tryptophans (ASTs) emission from the total tryptophan signal. Neutral (acrylamide) quenching of the ASTs is sensitive to the binding or trapping of nucleotide to the active site of S1. Anion (I(-)) quenching of the ASTs, sensitive to charge separation in the tryptophan micro environment, is negligible. These findings suggest the ASTs sense conformational change during ATPase from negatively charged surroundings. Specific chemical modifications of S1 identified the location of the ASTs. Trp131 was quenched by chemical modification, and its emission was isolated by taking the intensity difference between unmodified and modified S1. Trp131 fluorescence intensity and quenching constant do not distinguish among the bound or trapped nucleotides, suggesting that the vicinity of Trp131 does not change conformation during the ATPase cycle and eliminating Trp131 as an AST. Trp510 fluorescence was quenched by 5'-iodoacetamidofluorescein (5'IAF) modification of the reactive thiol (SH1) of S1. The tryptophan emission enhancement increment due to active site trapping decreases linearly with SH1 modification and extrapolates to 0 for 100% modification. These data identify Trp510 as the primary AST in skeletal S1 in agreement with observations from Dictyostelium (Batra and Manstein (1999) Biol. Chem. 380, 1017-1023) and smooth muscle S1 (Yengo et al. (2000) Biophys. J. 78, 242A). With Trp510 identified as the sole AST, fluorescence difference spectroscopy provides a novel means to monitor the concentration of myosin transient intermediates in ATP hydrolysis.  相似文献   

20.
When myosin interacts with ATP there is a characteristic enhancement in tryptophan fluorescence which has been widely exploited in kinetic studies. Using Dictyostelium motor domain mutants, we show that W501, located at the end of the relay helix close to the converter region, responds to two independent conformational events on nucleotide binding. First, a rapid isomerization gives a small fluorescence quench and then a slower reversible step which controls the hydrolysis rate (and corresponds to the open-closed transition identified by crystallography) gives a large enhancement. A mutant lacking W501 shows no ATP-induced enhancement in the fluorescence, yet quenched-flow measurements demonstrate that ATP is rapidly hydrolyzed to give a products complex as in the wild-type. The nucleotide-free, open and closed states of a single tryptophan-containing construct, W501+, show distinct fluorescence spectra and susceptibilities to acrylamide quenching which indicate that W501 becomes internalized in the closed state. The open-closed transition does not require hydrolysis per se and can be induced by a nonhydrolyzable analogue. At 20 degrees C, the equilibrium may favor the open state, but with ATP as substrate, the subsequent hydrolysis step pulls the equilibrium toward the closed state such that a tryptophan mutant containing only W501 yields an overall 80% enhancement. These studies allow solution-based assays to be rationalized with the crystal structures of the myosin motor domain and show that three different states can be distinguished at the interface of the relay and converter regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号