首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary Degradation of aflatoxin B1 byCorynebacterium rubrum and byAspergillus niger was analysed by adding14C-labeled aflatoxin B1 to cultures of these microorganisms. Two blue fluorescent compounds, formed byA. niger from aflatoxin B1 with Rf-values 0.42 and 0.48 (Rf of aflatoxin B1=0.54) were accumulated and characterized by UV-, fluorescence and mass spectrometry. Based on their properties both products were identified to be aflatoxin Ro. Under the same conditionsMucor ambiguus andTrichoderma viride also produced aflatoxin Ro.  相似文献   

2.
Summary The mutagenicity and mutagenic specificity of aflatoxin B1 and G1 were studied with the adenine-3 (ad-3) test system of Neurospora crassa. Aflatoxin B1 and G1 failed to show mutagenicity in resting conidia, but both agents were mutagenic in growing vegetative cultures. The frequencies of ad-3 mutants induced by aflatoxin B1 and G1 (40g/ml) were 70.7x10-6 survivors and 9.6x10-6 survivors, respectively. Since aflatoxin B1 gave a 177-fold increase over the spontaneous mutation frequency it is a rather potent mutagen, whereas aflatoxin G1 gave only a 24-fold increase and so is only moderately mutagenic.Genetic analyses of ad-3 mutants induced by aflatoxin B1 and G1 indicate that both agents induce a low frequency of multilocus deletions. The spectra of point mutations at the ad-3A and ad-3B loci induced by aflatoxin B1 and G1 are not distinguishable from each other. Hence both agents probably induce the same relative frequencies of genetic alterations. The frequencies of leakiness, allelic complementation, and classes of complementation patterns among the ad-3 mutants induced by both agents are higher than the frequencies among ICR-170-induced mutants and somewhat lower than those among NA- and AP-induced mutants. The results of reversion tests with NA, MNNG, and ICR-170 indicate that in addition to multilocus deletion, aflatoxin B1-induced ad-3 mutants consist of frameshifts, base-pair transitions, and possibly other types of intragenic alterations.  相似文献   

3.
To evaluate the rate at which the four main aflatoxins (aflatoxins B1, B2, G1 and G2) are able to cross the luminal membrane of the rat small intestine, a study about intestinal absorption kinetics of these mycotoxins has been made. In situ results obtained showed that the absorption of aflatoxins in rat small intestine is a very fast process that follows first-order kinetics, with an absorption rate constant (k a ) of 5.84±0.05 (aflatoxin B1), 4.06±0.09 (aflatoxin B2), 2.09±0.03 (aflatoxin G1) and 1.58±0.04 (aflatoxin G2) h–1, respectively.  相似文献   

4.
The aim of the present work was to investigate the production of aflatoxin byAspergillus parasiticus and to find out the possible ways to control it. Of 40 food samples collected from Abha region, Saudi Arabia, only 25% were contaminated with aflatoxins. Oil-rich commodities had the highly contaminated commodities by fungi and aflatoxins while spices were free from aflatoxins.Bacillus megatertum andB cereus were suitable for microbiological assay of aflatoxins. Czapek’s-Dox medium was found a suitable medium for isolation of fungi from food samples. The optimal pH for the growth ofA. parasiticus and its productivity of aflatoxin B1 was found at 6.0, while the best incubation conditions were found at 30°C for 10 days. D-glucose was the best carbon source for fungal growth, as well as aflatoxin production. Corn steep liquor, yeast extract and peptone were the best nitrogen sources for both fungal growth and toxin production (NH4)2HPO4 (1.55 gL-1) and NaNO2 (1.6 gL-1) reduced fungal growth and toxin production with 37.7% and 85%, respectively. Of ten amino acids tested, asparagine was the best for aflatoxin B1 production. Zn2+ and Co2+ supported significantly both fungal growth, as well as, aflatoxin B1 production at the different tested concentrations. Zn2+ was effective when added toA. parasiticus growth medium at the first two days of the culture age. The other tested metal ions expressed variable effects depending on the type of ion and its concentration. Water activity (aw) was an important factor controlling the growth ofA. parasiticus and toxin production. The minimum aw for the fungal growth was 0.8 on both coffee beans and rice grains, while aw of 0.70 caused complete inhibition for the growth and aflatoxin B1 production. H2O2 is a potent inhibitor for growth ofA. parasiticus and its productivity of toxins. NaHCO3 and C6H5COONa converted aflatoxin B1 to water-soluble form which returned to aflatoxin B1 by acidity. Black pepper, ciliated heath, cuminum and curcuma were the most inhibitory spices on toxin production. Glutathione, quinine, EDTA, sodium azide, indole acetic acid, 2,4-dichlorophenoxy acetic acid, phenol and catechol were inhibitory for both growth, as well as, aflatoxin B1 production. Stearic acid supported the fungal growth and decreased the productivity of AFB1 gradually. Lauric acid is the most suppressive fatty acid for both fungal growth and aflatoxin production, but oleic acid was the most potent supporter. Vitamin A supported the growth but inhibited aflatoxin B1 production. Vitamins C and D2 were also repressive particularly for aflatoxin production The present study included studying the activities of some enzymes in relation to aflatoxin production during 20-days ofA. parasiticus age in 2-days intervals. Glycolytic enzymes and pyruvate-generating enzymes seems to be linked with aflatoxin B1 production. Also, pentose-phosphate pathway enzymes may provide NADPH for aflatoxin B1 synthesis. The decreased activities of TCA cycle enzymes particularly from 4th day of growth up to 10th day were associated with the increase of aflatoxin B1 production. All the tested enzymes as well as aflatoxin B1 production were inhibited by either catechol or phenol.  相似文献   

5.
The inhibitory effects of aflatoxin B1 were found to be related to the gram character in procaryotes, used in this study. Ethylene diamine tetra chloroacetic acid (0.05% w/v) or Tween-80 (0.05 % v/v) addition accentuated the aflatoxin B1 growth inhibition inSalmonella typhi andEscherichia coli at different pH values. The inhibition of lipase production was only 5–20 % inPseudomonas fluorescence ca. 25–48% inStaphylococcus aureus andBacillus cereus at different aflatoxin B1 concentrations (4–16μg/ml).However, inhibition of α-amylase induction was complete in1Bacillus megaterium whereas the inhibition was partial inPseudomonas fluorescence (27–40%) at 32μg aflatoxin B1 concentration. An increase in leakage of cell contents and decreased inulin uptake were observed in toxin incubated sheep red blood cell suspension (1 %) with increased aflatoxin B1 concentration  相似文献   

6.
Studies on one of the protein rich pulses, horsegram (Dolichos biflorus L.) were carried out to know how far these low risk pulses are free from aflatoxin contamination under severe insect infestation in storage. A total of 150 stored seed samples of horsegram were analyzed for the presence of aflatoxins by collecting 25 samples each of undamaged and insect damaged seeds of all the three varieties (PDM-1, PHG-1 and HG-96). More than 33% of insect damaged seed samples were contaminated with aflatoxin B1 and B2, whereas less than 8% of the undamaged seed samples contain only low levels of aflatoxin B2. Higher levels of aflatoxin B1 (up to 130 μg/kg) were reported in insect damaged seed samples of all the three varieties under study. The levels of aflatoxin B2 were always lower than aflatoxin B1 of the corresponding seed samples with insect damage. Aflatoxin B1 was reported in both the undamaged and insect damaged seed samples of all the three varieties of horsegram. It is evident from the varietal response studies that PDM-1 and HG-96 varieties of horsegram are highly vulnerable to aflatoxin contamination whereas, PHG-1 variety is relatively less susceptible to it. In general, insect infestation leads to increase in fungal invasion (including aflatoxigenic fungi) and this further enhances the levels of aflatoxin contamination in horsegram seeds.  相似文献   

7.
Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize, and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins through competition with native aflatoxigenic populations. In this study, eight nontoxigenic strains of A. flavus belonging to different vegetative compatibility groups and differing in deletion patterns within the aflatoxin gene cluster were evaluated for their ability to reduce aflatoxin B1 when paired with eight aflatoxigenic strains on individual peanut seeds. Inoculation of wounded viable peanut seeds with conidia demonstrated that nontoxigenic strains differed in their ability to reduce aflatoxin B1. Reductions in aflatoxin B1 often exceeded expected reductions based on a 50:50 mixture of the two A. flavus strains, although one nontoxigenic strain significantly increased aflatoxin B1 when paired with an aflatoxigenic strain. Therefore, nontoxigenicity alone is insufficient for selecting a biocontrol agent and it is also necessary to test the effectiveness of a nontoxigenic strain against a variety of aflatoxigenic strains.  相似文献   

8.
Summary Blended 9-day-old mycelia of Aspergillus parasiticus NRRL 2999 were tested for their ability to degrade aflatoxins B1 and G1 at 7,19,28,36, and 45°C. Rates for degradation of aflatoxin B1 and G1 were maximum at 28°C. Intermediate rates of aflatoxin degradation were observed at 19 and 36°C while little aflatoxin was degraded at 7 and 45°C. Five different pH values (2.0, 3.0, 4.0, 5.0, and 6.5) were also tested to determine the effect of pH on ability of blended 9-day-old mycelia of A. parasiticus NRRL 2999 to degrade aflatoxins. The ability of mycelia to degrade aflatoxin was pH-dependent. Of the pH values tested, greatest rates of aflatoxin B1 and G1 degradation occurred when pH was in the range of 5 to 6.5. Little aflatoxin was degraded at pH 4.0 and essentially no aflatoxin was degraded by mycelia at pH 2.0 or 3.0 although some aflatoxin was degraded by acid conditions only at pH values of 4 or less.  相似文献   

9.
The fermentation activity of baker's yeast (measured by the amount of produced CO2) is inhibited by 100µg/ml and 10µg/ml aflatoxin B1, and by 100µg/ml and 10µg/ml diacetoxyscirpenol. Lower concentrations of these mycotoxins as well as of rubratoxin B enhance the fermentation. Only 0.001µg/ml aflatoxin B1, 0.00001µg/ml diacetoxyscirpenol and 0.01µg/ml rubratoxin B are without effect or slightly inhibitory. Patulin in all concentrations tested does not influence the CO2 production significantly. Cytochemical studies show that the enzyme alcohol dehydrogenase is inhibited by 100µg/ml and enhanced by 1µg/ml and 0.1µg/ml aflatoxin B1. It is suggested that the influence of at least aflatoxin B1 on the fermentation activity of the yeast cells is due to an interaction with alcohol dehydrogenase. It is possible that the activity of other enzymes of yeast is also influenced by mycotoxins.  相似文献   

10.
Mutants ofAspergillus flavus were recovered following the irradiation of conidia with ultraviolet light. Analysis of the mutants for aflatoxins B1, B2, G1, and G2 indicated a wide range of variability in aflatoxin levels. None of the isolates produced the G toxins, and four produced little or no aflatoxin B2. Production of B1 and B2 by the mutants ranged from 1.3 µ;g/ml to 967 µg/ml and zero to 30 µg/ml, respectively. The correlation between production of B1 and B2 was statistically significant. There was no apparent correlation between nutritional requirement or conidial color and aflatoxin production.  相似文献   

11.
The interaction of the carcinogenic mycotoxin, aflatoxin B1, with some electrondonating organic compounds including aromatic hydrocarbons, dimethylaniline, and aromatic amino acids, was studied. Spectrophotometric analysis of aflatoxin B1 revealed that hypochromicity in the absorption around 360 nm and hyperchromicity around 385 nm were induced by dimethylaniline, hexamethylbenzene, tryptophan, and imidazole. A similar shifting of aflatoxin B1 absorption was observed in benzene, toluene, and xylene in the presence of ZnCl2. The interaction of aflatoxin B1 with polystyrene was observed in a biphasic system. The association constants of aflatoxin B1: DMA4 (1:1) and of aflatoxin B1: tryptophan (1:1) were found to be 0.64 and 22.6 liters per mole, respectively. The results suggest that charge-transfer interaction occurs between aflatoxin B1 and these π-electron donors. Since the spectral changes on aflatoxin B1 absorption induced by these π-electron donors are similar to those induced by nucleic acids and proteins, it is postulated that charge-transfer interaction also occurs between aflatoxin B1 and these macromolecules. The role of such interaction in the biological activity of aflatoxin B1 is discussed.  相似文献   

12.
Transformation of sterigmatocystin and O-methylsterigmatocystin (two metabolic aflatoxin precursors) to aflatoxins by aflatoxigenic and nonaflatoxigenic field isolates of Aspergillus flavus was studied. The 24 nonaflatoxigenic isolates investigated failed to transform both precursors. Among the 8 aflatoxin-producing isolates used, 7 transformed both precursors whereas the remaining failed to transform both. According to these results, the usefulness of the measurement of enzymatic activities related to aflatoxin production in understanding the true status of conflictive field isolates is discussed.Abbreviations ST sterigmatocystin - OMST O-methylsterigmatocystin - AFB1 aflatoxin B1 - AFB2 aflatoxin B2 - AFG1 aflatoxin G1 - AFG2 aflatoxin G2 - GM growth medium of Adye and Mateles - RM replacement medium of Adye and Mateles  相似文献   

13.
Summary The effect of temperature on formation of aflatoxin on solid substrate (rice) byAspergillus flavus NRRL 2999 has been studied in some detail. The optimum temperature for production of both aflatoxin B1 and G1 under the conditions employed is 28° C. Comparable yields of B1 were obtained at 32° C, but considerably less G1 was produced at this temperature. Both B1 and G1 were found in lesser amounts at temperatures above 32° C, and the aflatoxin content of rice incubated at 37° C was low (300–700 ppb) even though growth was good.Reducing the temperature from 28° to 15° C resulted in progressively less aflatoxin, but 100 ppb of B1 was detected in cultures incubated 3 weeks at 11° C. No aflatoxin was produced at 8° C.The ratio of the four aflatoxins is affected by temperature. At the lower temperatures, essentially equal amounts of aflatoxin B1 and G1 were produced, whereas at 28° C, approximately four times as much B1 was detected as G1. At the higher temperatures, relatively less G was formed, until at 37° C, less than 10 ppb was detected.This is a laboratory of the Northern Utilization Research and Development Division, Agricultural Research Service, U.S. Department of Agriculture.  相似文献   

14.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. To better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. Aspergillus flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed 77 genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis.  相似文献   

15.
J. J. M. Hooymans 《Planta》1969,89(4):369-371
Summary The vegetation points of branches of Caralluma frerei (Asclepiadaceae) were treated with 300, 100 and 30 ppm of crude aflatoxin (36% B1, 38% G1, 3% B2, 2% G2) and with toxin-free control. Application of 300 and 100 ppm aflatoxin resulted in stop of growth and death of the upper leaves and flower buds. Malformations or wilting was not observed in any case. Branches treated with 30 ppm aflatoxin and with control solution developed normally. It is concluced that under the experimental conditions used aflatoxin has an unspecific toxic effect.  相似文献   

16.
Essential oils extracted from Citrus reticulata and Cymbopogon citratus were tested in vitro against the toxigenic strain of Aspergillus flavus, isolated from the tuberous roots of Asparagus racemosus, used in preparation of herbal drugs. The essential oils completely inhibited the growth of A. flavus at 750 ppm and also exhibited a broad fungitoxic spectrum against nine additional fungi isolated from the roots. Citrus reticulata and Cymbopogon citratus essential oils completely inhibited aflatoxin B1 production at 750 and 500 ppm, respectively. During in vivo investigation, the incidence of fungi and aflatoxin B1 production decreased considerably in essential oil-treated root samples. The findings thus indicate possible exploitation of the essential oils as effective inhibitor of aflatoxin B1 production and as post-harvest fungitoxicant of traditionally used plant origin for the control of storage fungi. These essential oils may be recommended as plant-based antifungals as well as aflatoxin B1 suppressors in post-harvest processing of herbal samples.  相似文献   

17.
Steaming one-half of a lot of 9-day-old mycelia of Aspergillus parasiticus NRRL 2999 for 6 min resulted in little or no subsequent degradation of aflatoxin B1 or G1 by these mycelia. The other half of these mycelia was not heat-treated and degraded aflatoxins B1 and G1 Filtrates of the growth substrate which remained after the mycelium was removed from 8- to 15-day old cultures of A. parasiticus NRRL 2999 did not degrade substantial amounts of aflatoxin B1 or G1, whereas mycelia originally produced on these filtrates degraded substantial amounts of both aflatoxins. The supernatant fluid from homogenates of 9-day-old mycelia of A. parasiticus NRRL 2999 degraded aflatoxins B1 and G1 when 0.1 M or 1.0 M phosphate buffer, pH 6.5, was used to suspend the homogenate. These data support the hypothesis that the aflatoxin degrading factor(s) present in the mycelium of A. purasiticus is/are enzyme(s) or at least influenced by enzyme(s).  相似文献   

18.
On administration of aflatoxin B1 to whole parsley (Petroselinum crispum) plants, a derivative was formed, which was shown to be aflatoxicol by its chromatographic properties and mass spectrometry. Optimum conditions for the production of the derivative was on the second day after administration of the toxin to the plants, which were 90 days old after germination. Cell-free preparations of parsley were found not to produce aflatoxicol A from added aflatoxin B1; instead they formed two new derivatives, which from chromatographic properties, were shown to be more polar than either aflatoxin B1 or aflatoxicol A.  相似文献   

19.
The influence of various inhibitors of hyphal growth, sporulation and biosynthesis of aflatoxin B1 in Aspergillus parasiticus NRRL 2999 was studied. 6-Thioguanine, dl-ethionine, fluoroacetic acid and phenylboric acid, inhibitors of maturation of fungal conidiophores and of conidiogenesis, were added at various concentrations to malt extract agar. Lower concentrations of 6-thioguanine and dl-ethionine did not inhibit the growth of hyphae and the sporulation. Phenylboric acid reduced conidiogenesis more than hyphal growth. The yields of aflatoxin B1 were significantly reduced. Additions of fluoroacetic acid did not greatly affect the growth of hyphae but totally inhibited the production of conidia and concurrently significantly reduced the formation of aflatoxin B1. An interrelation between conidiogenesis and onset of secondary metabolism in A. parasiticus is evident.  相似文献   

20.
Abstract

Equilibrium binding is believed to play an important role in directing the subsequent covalent attachment of many carcinogens to DNA. We have utilized UV spectroscopy to examine the non-covalent interactions of aflatoxin B1 and B2 with calf thymus DNA, poly(dAdT):poly(dAdT), and poly(dGdC):poly(dGdC), and have utilized NMR spectroscopy to examine non-covalent interactions of aflatoxin B2 with the oligodeoxynucleotide d(ATGCAT)2. UV-VIS binding isotherms suggest a greater binding affinity for calf thymus DNA and poly(dAdT):poly(dAdT) than for poly(dGdC):poly(dGdC). Scatchard analysis of aflatoxin B1 binding to calf thymus DNA in 0.1 M NaCl buffer indicates that binding of the carcinogen at levels of bound aflatoxin ? 1 carcinogen per 200 base pairs occurs with positive cooperativity. The cooperative binding effect is dependent on the ionic strength of the medium; when the NaCl concentration is reduced to 0.01 M, positive cooperativity is observed at carcinogen levels ? 1 carcinogen per 500 base pairs. The Scatchard data may be fit using a “two-site” binding model [L.S. Rosenberg, M J. Carvlin, and T.R. Krugh, Biochemistry 25, 1002–1008 (1986)]. This model assumes two independent sets of binding sites on the DNA lattice, one a high affinity site which binds the carcinogen with positive cooperativity, the second consisting of lower affinity binding sites to which non-specific binding occurs. NMR analysis of aflatoxin B2 binding to d(ATGCAT)2 indicates that the aflatoxin B2/oligodeoxynucleotide complex is in fast exchange on the NMR time scale. Upfield chemical shifts of 0.1–0.5 ppm are observed for the aflatoxin B2 4-OCH3, H5, and H6a protons. Much smaller chemical shift changes ? 0.06 ppm) are observed for the oligodeoxynucleotide protons. The greatest effect for the oligodeoxynucleotide protons is observed for the adenine H2 protons, located in the minor groove. Nonselective T1 experiments demonstrate a 15–25 % decrease in the relaxation time for the adenine H2 protons when aflatoxin B2 is added to the solution. This result suggests that aflatoxin B2 protons in the bound state may be in close proximity to these protons, providing a source of dipolar relaxation. Further experiments are in progress to probe the nature of the aflatoxin B1 and B2 complexes with polymeric DNA and oligodeoxynucleotides, and to establish the relationship between the non-covalent DNA-carcinogen complexes observed in these experiments, and covalent aflatoxin B1,-guanine N7 DNA adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号