首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The SPOT(trade mark) technology for highly parallel synthesis of peptides on flat surfaces in array type format has evolved into a versatile toolbox for a variety of applications in proteomics such as mapping protein-protein interactions and profiling the substrate specificity of enzymes such as kinases and proteases. Originally developed for the synthesis of short overlapping peptide sequences for mapping antibody epitopes this technology has recently been extended to the synthesis of functional protein domains. This opens up a variety of future applications such as target identification and protein expression profiling.  相似文献   

4.
The application of mass spectrometry to identify disease biomarkers in clinical fluids like serum using high throughput protein expression profiling continues to evolve as technology development, clinical study design, and bioinformatics improve. Previous protein expression profiling studies have offered needed insight into issues of technical reproducibility, instrument calibration, sample preparation, study design, and supervised bioinformatic data analysis. In this overview, new strategies to increase the utility of protein expression profiling for clinical biomarker assay development are discussed with an emphasis on utilizing differential lectin-based glycoprotein capture and targeted immunoassays. The carbohydrate binding specificities of different lectins offer a biological affinity approach that complements existing mass spectrometer capabilities and retains automated throughput options. Specific examples using serum samples from prostate cancer and hepatocellular carcinoma subjects are provided along with suggested experimental strategies for integration of lectin-based methods into clinical fluid expression profiling strategies. Our example workflow incorporates the necessity of early validation in biomarker discovery using an immunoaffinity-based targeted analytical approach that integrates well with upstream discovery technologies.  相似文献   

5.
The identification of disease-related genes is a major focus of modern biomedical research. Recent techniques, including array-based platforms for molecular profiling of disease tissues such as DNA arrays for expression profiling or matrix comparative genomic hybridization, allow for the comprehensive screening of the whole genome in a single experiment. Consequently, thousands of candidate genes have already been identified that may be linked to disease development and progression, and the process of lead discovery continues unimpeded. The evaluation of the clinical value of such leads is challenging because thousands of well-characterized tissue specimens must be analyzed. Tissue microarray (TMA) technology enables high-throughput tissue analyses to keep pace with the rapid process of lead discovery. With this technique, up to 1000 minute tissue samples are brought into an array format and analyzed simultaneously. The TMA technology is a fast, cost-effective, and statistically powerful method that will substantially facilitate translational research.  相似文献   

6.
Protein profiling using high-throughput tandem mass spectrometry has become a powerful method for analyzing changes in global protein expression patterns in cells and tissues as a function of developmental, physiologic and disease processes. This review summarizes the utility and practical application of multidimensional protein identification technology as a platform for comprehensive proteomic profiling of complex biologic samples. The strengths and potential problems and limitations associated with this powerful technology are discussed, with an emphasis placed on one of the biggest challenges currently facing large-scale expression profiling projects -- namely, data analysis. Complementary bioinformatic computational data mining strategies, such as clustering, functional annotation and statistical inference, are also discussed as these are increasingly necessary for interpreting the results of global proteomic profiling studies.  相似文献   

7.
Protein profiling using high-throughput tandem mass spectrometry has become a powerful method for analyzing changes in global protein expression patterns in cells and tissues as a function of developmental, physiologic and disease processes. This review summarizes the utility and practical application of multidimensional protein identification technology as a platform for comprehensive proteomic profiling of complex biologic samples. The strengths and potential problems and limitations associated with this powerful technology are discussed, with an emphasis placed on one of the biggest challenges currently facing large-scale expression profiling projects – namely, data analysis. Complementary bioinformatic computational data mining strategies, such as clustering, functional annotation and statistical inference, are also discussed as these are increasingly necessary for interpreting the results of global proteomic profiling studies.  相似文献   

8.
Genomic Portraits of the Nervous System in Health and Disease   总被引:1,自引:0,他引:1  
As the human genome project moves toward its goal of sequencing the entire human genome, gene expression profiling by DNA microarray technology is being employed to rapidly screen genes for biological information. In this review, we will introduce DNA microarray technology, outline the basic experimental paradigms and data analysis methods, and then show with some examples how gene expression profiling can be applied to the study of the central nervous system in health and disease.  相似文献   

9.
10.
11.
Expression profiling using microarray technology has refined the classification of cancer. The greatest advances have been in lymphomas, leukaemias, and breast cancer where array information identified new diagnostic categories not achievable by standard microscopic or molecular means. These sub-categories often have distinct prognostic profiles. The same investigations have clarified the cellular lineage of cancer types, highlighted the importance of biochemical pathways in determining the expression 'phenotype', and identified potential new diagnostic markers and therapeutic targets.  相似文献   

12.
13.
14.
Real-time PCR has become increasingly important in gene expression profiling research, and it is widely agreed that normalized data are required for accurate estimates of messenger RNA (mRNA) expression. With increased gene expression profiling in preclinical research and toxicogenomics, a need for reference genes in the rat has emerged, and the studies in this area have not yet been thoroughly evaluated. The purpose of our study was to evaluate a panel of rat reference genes for variation of gene expression in different tissue types. We selected 48 known target genes based on their putative invariability. The gene expression of all targets was examined in 11 types of rat tissues using TaqMan low density array (LDA) technology. The variability of each gene was assessed using a two-step statistical model. The analysis of mean expression using multiple reference genes was shown to provide accurate and reliable normalized expression data. The least five variable genes from each specific tissue were recommended for future tissue-specific studies. Finally, a subset of investigated rat reference genes showing the least variation is recommended for further evaluation using the LDA platform. Our work should considerably enhance a researcher's ability to simply and efficiently identify appropriate reference genes for given experiments.  相似文献   

15.
The analysis of biological processes has been revolutionized by the emergence of the DNA array technology. As cellular biological events are controlled by gene expression, their modulations are markers of the cellular activity. These modulations can be indicative of either a physiological process or a pathological one. Monitoring of the expression levels of thousands of genes simultaneously, the expression profiling method is based upon comparative studies where the identification of the differentially expressed genes in two samples is aimed. The two samples under study may be compared temporally or following drug treatment, they may also originate from different sources, e.g. normal versus pathological samples. In that case, gene expression profiling is conducted for diagnostics purposes or therapy monitoring, and offers an opportunity to identify new drug targets. Using different examples, we describe the potentialities of this approach in oncology.  相似文献   

16.
17.
Gene expression profiling is rapidly becoming a mainstay of functional genomic studies. However, there have been relatively few studies of how the data from expression profiles integrate with more classic approaches to examine gene expression. This study used gene expression profiling of a portion of the genome of Saccharomyces cerevisiae to explore the impact of blocks in the isoprenoid biosynthetic pathway on the expression of genes and the regulation of this pathway. Approximately 50% of the genes whose expression was altered by blocks in isoprenoid biosynthesis were genes previously known to participate in the pathway. In contrast to this simple correspondence, the regulatory patterns revealed by different blocks, and in particular by antifungal azoles, was complex in a manner not anticipated by earlier studies.  相似文献   

18.
DNA profiling     
Although some concerns still remain in standard DNA profiling technology over the assumptions from population genetics used to calculate expected match frequencies, forensic scientists are preparing for the introduction of the next generation of DNA profiling techniques based on the polymerase chain reaction. These new techniques offer the prospect of dramatically increasing the speed and sensitivity of DNA profiling and have already been applied in some casework studies.  相似文献   

19.
Zhu J 《Biotechnology advances》2012,30(5):1158-1170
Mammalian cell expression has become the dominant recombinant protein production system for clinical applications because of its capacity for post-translational modification and human protein-like molecular structure assembly. While expression and production have been fully developed and Chinese hamster ovary cells are used for the majority of products both on the market and in clinical development, significant progresses in developing and engineering new cell lines, introducing novel genetic mechanisms in expression, gene silencing, and gene targeting, have been reported in the last several years. With the latest analytical methods development, more attention is being devoted towards product quality including glycol profiling, which leads to better understanding the impact of culture condition during production. Additionally, transient gene expression technology platform plays more important role in biopharmaceutical early development stages. This review focused on the latest advancements in the field, especially in active areas such as expression systems, glycosylation impact factors, and transient gene expression.  相似文献   

20.
The first report on DNA microarray technology appeared in Science in 1995. Starting from gene expression profiling, its application fields have considerably evolved and extend from microbiology to cancer study. DNA microarrays are now routinely used for the detection of single nucleotide polymorphisms, microRNAs analysis, study of copy number variation, CpG methylations detection.... Furthermore, the approval of DNA microarray technology by US Food and Drug Administration has opened the door to new applications in clinical diagnostics. At the same time, DNA arrays have to face the concurrence of the latest generation of very high throughput sequencing devices which are predicted to make the microarray technology obsolete. This review will discuss on this paradoxical situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号