首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor radiosensitivity and apoptosis   总被引:13,自引:0,他引:13  
With approximately 50% of all cancer patients receiving radiation therapy at some point in their treatment, increasing the sensitivity of tumor cells to the lethal effects of irradiation has the potential to significantly improve the rate of recovery from many malignancies. The major biological determinant of radiotherapy failure is tumor radioresistance. It is well known that tumors from the same histological group and stage of development are extremely heterogeneous in their sensitivity to radiotherapy. There are many factors which could affect tumor radiosensitivity. One cellular mechanism common to various therapeutic regiments, including radiation, is killing tumor cells via apoptosis. However, this killing is not always efficient. In this review the link between tumor sensitivity to radiation treatment and the capacity of tumor cells to be killed by apoptotic mechanisms will be discussed.  相似文献   

2.
Tak JK  Lee JH  Park JW 《BMB reports》2012,45(4):242-246
The use of ionizing radiation (IR) is essential for treating many human cancers. However, radioresistance markedly impairs the efficacy of tumor radiotherapy. IR enhances the production of reactive oxygen species (ROS) in a variety of cells which are determinant components in the induction of apoptosis. Much interest has developed to augment the effect of radiation in tumors by combining it with radiosensitizers to improve the therapeutic ratio. In the current study, the radiosensitizing effects of resveratrol and piperine on cancer cells were evaluated. Cancer cell lines treated with these natural products exhibited significantly augmented IR-induced apoptosis and loss of mitochondrial membrane potential, presumably through enhanced ROS generation. Applying natural products as sensitizers for IR-induced apoptotic cell death offers a promising therapeutic approach to treat cancer.  相似文献   

3.
Radiation is a well established therapeutic modality for the treatment of solid tumors. By merging molecular biological approaches with radiation biology, a significant number of signaling events elicited by ionizing radiation have been delineated. These signaling pathways include events leading to cell cycle arrest, apoptosis or cell survival. There are two major signaling events that affect radiation response. One is the intrinsic/constitutive pro-survival signaling event that is present in proliferating tumor cells while the other is "induced pro-survival event" in response to radiation, both of these events confer resistance to the killing effects of radiation. In this review, signaling pathways that lead to either apoptosis or survival of cells following ionizing radiation are discussed in detail. In addition, mechanisms of action for gene/drug based inhibitors that modulate the expression and function of various genes and gene products involved in pro-survival signaling pathways are described. Further, novel strategies to abrogate the "induced radiation resistance" leading to enhanced therapeutic efficacy of ionizing radiation have been proposed. These novel strategies include the use of radio-gene therapy, low dose fractionated radiation therapy as a chemopotentiator and therapeutic utility of high radiation dose induced bystander effect. The complete understanding of the molecular pathways leading to apoptosis/survival of cells following ionizing radiation will help in tailoring more effective novel strategies and treatment modalities for complete eradication of cancer.  相似文献   

4.
Due to the intrinsic resistance of many tumors to radiotherapy, current methods to improve the survival of cancer patients largely depend on increasing tumor radiosensitivity. It is well‐known that miR‐200c inhibits epithelial–mesenchymal transition (EMT), and enhances cancer cell chemosensitivity. We sought to clarify the effects of miR‐200c on the radiosensitization of human breast cancer cells. In this study, we found that low levels of miR‐200c expression correlated with radiotolerance in breast cancer cells. miR‐200c overexpression could increase radiosensitivity in breast cancer cells by inhibiting cell proliferation, and by increasing apoptosis and DNA double‐strand breaks. Additionally, we found that miR‐200c directly targeted TANK‐binding kinase 1 (TBK1). However, overexpression of TBK1 partially rescued miR‐200c mediated apoptosis induced by ionizing radiation. In summary, miR‐200c can be a potential target for enhancing the effect of radiation treatment on breast cancer cells. J. Cell. Biochem. 114: 606–615, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.

Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors with high recurrence and metastasis rates. Radiotherapy represents a major therapeutic option for HCC patients. However, the efficacy of radiotherapy has been limited due to the development of intrinsic radioresistance of the tumor cells. Small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3), one member of SUMO pseudogene family, is a novel identified lncRNA that was originally identified to be upregulated in gastric cancer. However, the detailed roles of SUMO1P3 in HCC development remain to be elucidated. Here, the expression of SUMO1P3 in HCC tissues and cells was examined by qRT-PCR. Cell proliferation, colony formation ability, invasion ability, apoptosis, and radiosensitivity were detected by MTT assay, colony formation assay, cell invasion assay, flow cytometry analysis, and survival fraction assay, respectively. We found that SUMO1P3 was significantly upregulated in HCC tissues and cells. Besides, SUMO1P3 was highly expressed in HCC patients with higher TNM stage. Furthermore, SUMO1P3 knockdown markedly suppressed cell proliferation, colony formation ability, and cell invasiveness, promoted apoptosis, and enhanced radiosensitivity of HCC cells. We concluded that the knockdown of SUMO1P3 repressed tumor growth, invasion, promoted apoptosis, and enhanced radiosensitivity in HCC, providing evidence that SUMO1P3 might be a potential novel biomarker and a therapeutic target for HCC.

  相似文献   

6.
Optimization in radiotherapy may be conceivably achieved by individualized treatment regimens. For this, the radiosensitivity of the tumor cells to be treated must be known. A method is presented to show that the effect of radiation on tumor cells in spheroids can be quantitatively evaluated without complicated cell determinations of spheroid composition. This evaluation is based on the dynamics of inactivation of the colony forming ability of whole spheroids composed chiefly of non-transformed diploid fibroblasts and a minority of HeLa "test" cells. Here, spheroids of identical composition, but of different sizes are inactivated proportional to their sizes, thus obviating the need for tedious single cell procedures. The use of spheroids of different sizes permits the deduction of dose-effect relationships, and the innate radiosensitivity of tumors cells. This is a novel method for measuring the radio and chemosensitivity of tumors in primary culture, i.e. cells directly isolated from tumors.  相似文献   

7.
Although endothelial cell apoptosis participates in the tumor shrinkage after single high-dose radiotherapy, little is known regarding the vascular response after conventionally fractionated radiation therapy. Therefore, we evaluated hypoxia, perfusion and vascular microenvironment changes in an orthotopic prostate cancer model of conventionally fractionated radiation therapy at clinically relevant doses (2 Gy fractions, 5 fractions/week). First, conventionally fractionated radiation therapy decreased tumor cell proliferation and increased cell death with kinetics comparable to human prostate cancer radiotherapy. Secondly, the injection of Hoechst 33342 or fluorescent-dextrans showed an increased tumor perfusion within 14 days in irradiated tumors, which was correlated with a clear reduction of hypoxia. Improved perfusion and decreased hypoxia were not explained by increased blood vessel density, size or network morphology. However, a tumor vascular maturation defined by perivascular desmin+/SMA+ cells coverage was clearly observed along with an increase in endothelial, zonula occludens (ZO)-1 positive, intercellular junctions. Our results show that, in addition to tumor cell killing, vascular maturation plays an uncovered role in tumor reoxygenation during fractionated radiation therapy.  相似文献   

8.
Altered cellular metabolism is a hallmark of tumor cells and contributes to a host of properties associated with resistance to radiotherapy. Detection of radiation-induced biochemical changes can reveal unique metabolic pathways affecting radiosensitivity that may serve as attractive therapeutic targets. Using clinically relevant doses of radiation, we performed label-free single cell Raman spectroscopy on a series of human cancer cell lines and detected radiation-induced accumulation of intracellular glycogen. The increase in glycogen post-irradiation was highest in lung (H460) and breast (MCF7) tumor cells compared to prostate (LNCaP) tumor cells. In response to radiation, the appearance of this glycogen signature correlated with radiation resistance. Moreover, the buildup of glycogen was linked to the phosphorylation of GSK-3β, a canonical modulator of cell survival following radiation exposure and a key regulator of glycogen metabolism. When MCF7 cells were irradiated in the presence of the anti-diabetic drug metformin, there was a significant decrease in the amount of radiation-induced glycogen. The suppression of glycogen by metformin following radiation was associated with increased radiosensitivity. In contrast to MCF7 cells, metformin had minimal effects on both the level of glycogen in H460 cells following radiation and radiosensitivity. Our data demonstrate a novel approach of spectral monitoring by Raman spectroscopy to assess changes in the levels of intracellular glycogen as a potential marker and resistance mechanism to radiation therapy.  相似文献   

9.
Based on the role of phosphorylation of the histone H2A variant H2AX in recruitment of DNA repair and checkpoint proteins to the sites of DNA damage, we have investigated gammaH2AX as a reporter of tumor radiosensitivity and a potential target to enhance the effectiveness of radiation therapy. Clinically relevant ionizing radiation (IR) doses induced similar patterns of gammaH2AX focus formation or immunoreactivity in radiosensitive and radioresistant human tumor cell lines and xenografted tumors. However, radiosensitive tumor cells and xenografts retained gammaH2AX for a greater duration than radioresistant cells and tumors. These results suggest that persistence of gammaH2AX after IR may predict tumor response to radiotherapy. We synthesized peptide mimics of the H2AX carboxyl-terminal tail to test whether antagonizing H2AX function affects tumor cell survival following IR. The peptides did not alter the viability of unirradiated tumor cells, but both blocked induction of gammaH2AX foci by IR and enhanced cell death in irradiated radioresistant tumor cells. These results suggest that H2AX is a potential molecular target to enhance the effects of radiotherapy.  相似文献   

10.
Radiation-induced dermatitis is a debilitating clinical problem in cancer patients undergoing cancer radiation therapy. It is also a possible outcome of exposure to high levels of radiation due to accident or hostile activity. We report that activation of aldehyde dehydrogenase 2 (ALDH2) enzymatic activity using the allosteric agonist, Alda-1, significantly reduced 4-hydroxynonenal adducts accumulation, delayed the onset of radiation dermatitis and substantially reduced symptoms in a clinically-relevant model of radiation-induced dermatitis. Importantly, Alda-1 did not radioprotect tumors in mice. Rather, it increased the sensitivity of the tumors to radiation therapy. This is the first report of reactive aldehydes playing a role in the intrinsic radiosensitivity of normal and tumor tissues. Our findings suggest that ALDH2 represents a novel target for the treatment of radiation dermatitis without reducing the benefit of radiotherapy.  相似文献   

11.
Apoptosis in irradiated murine tumors   总被引:16,自引:0,他引:16  
Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors.  相似文献   

12.
Diffusing alpha-emitter radiation therapy (DaRT) is a proposed new form of brachytherapy using α particles to treat solid tumors. The method relies on implantable 22?Ra-loaded sources that continually release short-lived α-particle-emitting atoms that spread inside the tumor over a few millimeters. This treatment was demonstrated to have a significant effect on tumor growth in murine and human-derived models, but the degree of tumor response varied across cell lines. Tumor response was found to correlate with the degree of radionuclide spread inside the tumor. In this work we examined the radiosensitivity of individual cells to determine its relationship to tumor response. Cells were irradiated in vitro by α particles using a 22?Th irradiator, with the mean lethal dose, D?, estimated from survival curves generated by standard methods. The results were further analyzed by microdosimetric tools to calculate z?, the specific energy resulting in a survival probability of 1/e for a single cell, which is considered to better represent the intrinsic radiosensitivity of individual cells. The results of the study demonstrate that, as a rule, tumors that respond more favorably to the DaRT treatment are also characterized by higher intrinsic cellular radiosensitivities, with D? ranging from 0.7 Gy to 1.5 Gy for the extreme cases and z? following the same trend.  相似文献   

13.
14.
Uveal melanoma (UM) is one of the most therapy-resistant cancers. Radiotherapy is the preferred treatment for most cases of UM. However, some UM cells, such as the SP6.5 or OM431 cell lines, are relatively radioresistant. In this study, we attempted to improve the current UM therapy using an adenovirus radio-inducible gene therapy system. The antitumor adenovirus was constructed by inclusion of the radiation-inducible early growth response gene 1 (EGR1) promoter and the anticancer tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. We demonstrated that the UM SP6.5 and OM431 cell lines were susceptible to the TRAIL-induced antitumor effect. TRAIL expression was enhanced in the adenovirus containing EGR1/TRAIL (Ad-ET) treatment group by radiotherapy, whereas Ad-ET significantly increased cell death and apoptosis caused by radiotherapy. In mice bearing xenograft tumors, apoptotic cells were detected in pathological tumor sections. Adenovirus Ad-ET combined with radiation therapy significantly inhibited tumor growth compared with the other treatment groups (P < 0.01). Our findings indicate that radioresponsive gene therapy has the potential to be a more effective and specific therapy for UM because the therapeutic gene can be spatially or temporally controlled by exogenous radiation.  相似文献   

15.
Tumor hypoxia is associated with resistance to radiotherapy and anticancer chemotherapy. However, it can be exploited to therapeutic advantage by concomitantly using hypoxic cytotoxins, such as tirapazamine (TPZ). Tumor electroporation offers the means to further increase tumor hypoxia by temporarily reducing tumor blood flow and therefore increase the cytotoxicity of TPZ. The primary objective of this work was to determine whether electric pulses combined with TPZ and radiotherapy (electroradiochemotherapy) was more efficacious than radiochemotherapy (TPZ + radiation). In these studies using the SCCVII tumor model in C3H mice, electroradiochemotherapy produced up to sixfold more tumor growth delay (TGD) than TPZ + radiation. In these studies, (1) large tumors (280 +/- 15 mm3) responded better to electroradiochemotherapy than small tumors (110 +/- 10 mm3), (2) TGD correlated linearly with tumor volume at the time of electroradiochemotherapy, (3) electric pulses induced a rapid but reversible reduction in O2 saturation, and (4) the electric field was highest near the periphery of the tumor in a 3D computer model. The findings suggested that electroradiochemotherapy gained its therapeutic advantage over TPZ + radiation by enhancing the cytotoxic action of TPZ through reduced tumor oxygenation. The greater antitumor effect achieved in large tumors may be related to tumor morphology and the electric-field distribution. These results suggest that electro-pulsation of large solid tumors may be of benefit to patients treated with radiation in combination with agents that kill hypoxic cells.  相似文献   

16.
In MCF-7 breast tumor cells, ionizing radiation promoted autophagy that was cytoprotective; pharmacological or genetic interference with autophagy induced by radiation resulted in growth suppression and/or cell killing (primarily by apoptosis). The hormonally active form of vitamin D, 1,25D 3, also promoted autophagy in irradiated MCF-7 cells, sensitized the cells to radiation and suppressed the proliferative recovery that occurs after radiation alone. 1,25D 3 enhanced radiosensitivity and promoted autophagy in MCF-7 cells that overexpress Her-2/neu as well as in p53 mutant Hs578t breast tumor cells. In contrast, 1,25D 3 failed to alter radiosensitivity or promote autophagy in the BT474 breast tumor cell line with low-level expression of the vitamin D receptor. Enhancement of MCF-7 cell sensitivity to radiation by 1,25D 3 was not attenuated by a genetic block to autophagy due largely to the promotion of apoptosis via the collateral suppression of protective autophagy. However, MCF-7 cells were protected from the combination of 1,25D 3 with radiation using a concentration of chloroquine that produced minimal sensitization to radiation alone. The current studies are consistent with the premise that while autophagy mediates a cytoprotective function in irradiated breast tumor cells, promotion of autophagy can also confer radiosensitivity by vitamin D (1,25D 3). As both cytoprotective and cytotoxic autophagy can apparently be expressed in the same experimental system in response to radiation, this type of model could be utilized to distinguish biochemical, molecular and/or functional differences in these dual functions of autophagy.  相似文献   

17.
Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1α (HIF-1α) and miR-210 expression and cell arrest in the G(0)/G(1) phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G(0)/G(1) phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells.  相似文献   

18.
The published survival curves of 110 human tumor cell lines and 147 nontransformed human fibroblast strains have been reanalyzed using three different statistical methods: the single hit multitarget model, the linear-quadratic model, and the mean inactivation dose. The 110 tumor cell lines were classified in two ways: (a) into three categories defined by clinical radiocurability criteria, and (b) into seven categories based on histopathology. The 147 fibroblast strains were divided into eight genetic groups. Differences in the radiosensitivities of both the tumor cell and fibroblast groups could be demonstrated only by parameters that describe the slopes of the initial part of the survival curves. The capacity of the survival level to identify significant differences between groups was dose dependent over the range 1 to 6 Gy. This relationship showed a bell-shaped curve with a maximum at 1.5 Gy for the tumor cell lines and 3 Gy for the fibroblasts. Values for intrinsic radiosensitivity for a number of groups of tumors have also been obtained by primary culture of tumor cells. These values are strictly comparable to those obtained by clonogenic methods. This confirms that intrinsic radiosensitivity is a determinant of the response of tumor cells to radiotherapy and suggests that tissue culture methods may be used as a predictive assay.  相似文献   

19.
Lung cancer is the leading cause of cancer-related mortality worldwide. Radiotherapy is often applied for treating lung cancer, but it often fails because of the relative non-susceptibility of lung cancer cells to radiation. MicroRNAs (miRNAs) have been reported to modulate the radiosensitivity of lung cancer cells and have the potential to improve the efficacy of radiotherapy. The purpose of this study was to identify a miRNA that can adjust radiosensitivity in lung adenocarcinoma cells. Two lung adenocarcinoma cell lines (CL1-0 and CL1-5) with different metastatic ability and radiosensitivity were used. In order to understand the regulatory mechanisms of differential radiosensitivity in these isogenic tumor cells, both CL1-0 and CL1-5 were treated with 10 Gy radiation, and were harvested respectively at 0, 1, 4, and 24 h after radiation exposure. The changes in expression of miRNA upon irradiation were examined using Illumina Human microRNA BeadChips. Twenty-six miRNAs were identified as having differential expression post-irradiation in CL1-0 or CL1-5 cells. Among these miRNAs, miR-449a, which was down-regulated in CL1-0 cells at 24 h after irradiation, was chosen for further investigation. Overexpression of miR-449a in CL1-0 cells effectively increased irradiation-induced DNA damage and apoptosis, altered the cell cycle distribution and eventually led to sensitization of CL1-0 to irradiation.  相似文献   

20.
Survivin is a key member of the inhibitor of apoptosis protein family, and is considered a promising therapeutic target due to its universal overexpression in cancers. Survivin is implicated in cellular radiation response through its role in apoptosis, cell division, and DNA damage response. In the present study, analysis of publically available data sets showed that survivin gene expression increased with breast cancer stage (p < 0.00001) and was significantly higher in estrogen receptor-negative cancers as compared to estrogen receptor-positive cancers (p = 9e-46). However, survivin was prognostic in estrogen receptor-positive tumors (p = 0.03) but not in estrogen receptor-negative tumors (p = 0.28). We assessed the effect of a survivin dominant-negative mutant on colony-formation (2D) and mammosphere-formation (3D) efficiency, and radiation response in the estrogen receptor-positive MCF7 and estrogen receptor-negative SUM149 breast cancer cell lines. The colony-formation efficiency was significantly lower in the dominant-negative survivin-transduced cells versus control MCF7 cells (0.42 vs. 0.58, p < 0.01), but it was significantly higher in dominant-negative population versus control-transduced SUM149 cells (0.29 vs. 0.20, p < 0.01). A similar, non-significant, trend in mammosphere-formation efficiency was observed. We compared the radiosensitivity of cells stably expressing dominant-negative survivin with their controls in both cell lines under 2D and 3D culture conditions following exposure to increasing doses of radiation. We found that the dominant-negative populations were radioprotective in MCF7 cells but radiosensitive in SUM149 cells compared to the control-transduced population; further, Taxol was synergistic with the survivin mutant in SUM149 but not MCF7. Our data suggests that survivin modulation influences radiation response differently in estrogen receptor-positive and estrogen receptor-negative breast cancer subtypes, warranting further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号